| 研究生: |
譚芮妲 Regina Ayunita Tarigan |
|---|---|
| 論文名稱: |
Szemerédi’s Regularity Lemma and Its Applications Szemerédi’s Regularity Lemma and Its Applications |
| 指導教授: |
沈俊嚴
Chun-Yen Shen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | extremal graph 、partition graph 、arithmetic progression 、triangle removal lemma 、graph density 、random graphs 、ϵ-regularity 、ϵ-regular partition 、equipartition 、Szemerédi 、Regularity Lemma 、Roth's Theorem |
| 外文關鍵詞: | extremal graph, partition graph, arithmetic progression, triangle removal lemma, graph density, random graphs, ϵ-regularity, ϵ-regular partition, equipartition, Szemerédi, Regularity Lemma, Roth's Theorem |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中, 我們研讀探討在圖論領域裡的著名定理 Szemerédi’s Regularity Lemma 以及此定理的應用. 簡單來說 Szemerédi’s Regularity Lemma 可以將一個圖分解成許多幾乎相等的分割, 而這些分割之間彼此兩兩幾乎是隨機的分佈. 最後我們將討論如何使用此定理運用在數論的一個著名的定理, 所謂的 Roth's Theorem. 此定理敘述任一個整數的子集合存在長度為三的等差數列只要此集合的密度大於零.
In this dissertation, the Szemerédi’s Regularity Lemma and its application are studied. This lemma is used to partition a large enough graph into almost equal parts so that the number of edges across the parts is fairly random. On the other hand, Roth's Theorem states that there exists an arithmetic progression with length 3 in a subset in integer with positive upper density. We shall see that it can be proved by using triangle removal lemma, which is an application of Szemerédi’s Regularity Lemma.
[1] Bella Bollobas. Modern Graph Theory. Springer-Verlag,New York,2005.
[2] Reinhart Diestel. GraphTheory. Springer-Verlag,New York,1998.
[3] C.L.Liu Introduction to Combinatorial Mathematics. McGraw-Hill,USA, 1968.
[4] Debidash Gosh. Introduction to Theory of Automata,Formal Languages, and Computation (Ebook version). PHI Learning Private Limited, Delhi,2013.
[5] Bela Bollobas. Extremal Graph Theory. Academic Press Inc., New York,1978.
[6] Bruce.M. Landman and Aaron Robertson. Ramsey Theory on the
Integers. American Mathematical Society,USA,2014.
[7] Chongbumm Lee.Lecture Notes: Lecture 3. Regularity Lemma.
MIT, Massachusetts,2015.
[8] Fan Chung Graham. Lecture Notes: The Combinatorics of Pat-
terns in Subsets and Graphs. University of California San Diego,San Diego,2004.
[9] Brandon Hanson.Student Papers: Analysis in Graph Theory and
Szemerédi's Regularity Lemma. Wiki of the Department of Mathe-
matics ofthe University of Toronto,2010.
[10] Shagnik Das.Notes: Applications of the Szemerédi's Regularity Lemma. Wiki of the Department of Mathematics of the University of Toronto,2010.
[11] Cassie Deskus.Student Papers: An Introduction to the Regularity Lemma. University of Chicago,2011.
[12] Jonas Hägglund. Master Thesis: Szemerédi's regularity lemma and its applications in combinatorics. Umeå University, Sweden,2006.
[13] Anna Llado.International Workshop Materials: CIMPA-
UNESCO-INDONESIA School on Extremal Problems and Hamiltonicity in Graphs: An Introduction to Extremal Graph Theory.
ITB, Indonesia,2009.
[14] Endre Szemeredi, On the sets of integers containing no k
elements in arithmetic progression, Polska Akademia Nauk.Instytut Matematyczny. ActaArithmetica, 27 (1975), 199-245.30
[15] Endre Szemerédi, Regular partitions of graphs (French summary) Problèm es combinatoire set theorié des graphes, Colloq.Internat. CNRS, 260, CNRS,Paris 260 (1978), 399-401.
[16] B.L.van der Waerden, Beweis einer Baudetschen Vermutung.
(German version),Nieuw Archief voor Wiskunde.Tweede Serie, 15
(1927), 212-216.
[17] Paul Erdös and Paul Turán, On some sequences of integers, Journal of the London Mathematical Society, 11(4) (1936),261-264.
[18] Klaus Friedrich Roth, On certain sets of integers, Journalofthe London Mathematical Society, 28(1) (1953),104-109.
[19] Endre Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad.Sci.Hung, 20 (1969),89-104.
[20] János Komlós, Ali Shokoufandeh, Miklós Simonovits,and Endre Szemerédi, The Regularity Lemma and Its Applications in Graph Theory,G.B. Khosrovshahietal.(Eds.):Theoretical Aspects of Computer Science, LNCS 2292 (2002), 84-112.
[21] Wikipedia:Handshaking lemma,
https://en.wikipedia.org/wiki/Handshaking lemma.
[22] Wikipedia:Bipartite graph,
https://en.wikipedia.org/wiki/Bipartite graph.
[23] WolframMathworld:Complete Bipartite Graph,
http://mathworld.wolfram.com/CompleteBipartiteGraph.html.
[24] Wikipedia:Clique,
https://en.wikipedia.org/wiki/Clique (graph theory).
[25] Wikipedia:Independent set (graph theory),
https://en.wikipedia.org/wiki/Independent set (graph theory).
[26] Wikipedia:Turán's Theorem,
https://en.wikipedia.org/wiki/Turán's theorem
[27] Wikipedia:Extremal graph theory,
https://en.wikipedia.org/wiki/Extremal graph theory.
[28] Disquisitiones Mathematicae: Applications of Szemerédi's regularity lemma: triangle removal lemma, Roth'stheorem, Corner's theorem and graph removal lemma,
https://matheuscmss.wordpress.com/2012/01/07/applications
-of-szemeredis-regularity-lemma-triangle-removal-lemma
-roths-theorem-corners-theorem-and-graph-removal-lemma/.