跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭劭家
Chao-Chia Cheng
論文名稱: 高功率棒型Nd:YAG雷射熱效應非敏共振腔之研究
指導教授: 劉海北
Hai-Pei Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 88
語文別: 中文
論文頁數: 134
中文關鍵詞: Nd:YAG雷射熱透鏡應效應雷射共振腔減熱效應多棒串接共振腔模組化共振腔
外文關鍵詞: Nd:YAG laser, thermal lensing effect, resonator, less heat generation, multi-rod resonator, modulized resonator
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高功率固態雷射因熱透鏡效應的影響,使此類雷射的輸出在激勵功率之變化下,不易維持光束品質的穩定。本實驗室對此課題利用兩組平面反射鏡與凸透鏡的組合,分別置於棒型Nd:YAG晶體兩側的共振腔結構,已達成穩定輸出遠場發散角之初步結果。本論文延續此一成果,再進一步探討如何在更大的激勵功率變化之下使發散角更小,並同時降低近場光點的大小變化。使雷射光束的穩定性,在輸出功率由14瓦變化至87瓦的範圍內,遠場發散角的變率為?? / ? = 7.5%,近場光點半徑的變率為?w / w = 6.0%。
    對於避免熱透鏡效應的方法,仍以各元件間距之調整,構成輸出光束品質穩定之單棒熱效應非敏共振腔。本文將介紹如何以高斯光束傳遞原則及ABCD矩陣法,建立共振腔模擬計算程式,來預測最佳之共振腔結構。
    另觀測到緩熱效應(Less Heat Generation)對輸出光束之影響,並首先討論緩熱效應對共振腔穩定性所造成之改變。藉此可修正當雷射光束建立後之共振腔行為。
    而依「對稱延展共振腔」的構想,可將前述之單棒熱不敏感共振腔串接為雙棒或多棒之熱不敏感共振腔。並在維持輸出光束品質的前提之下,可以有效地增加此固態雷射之輸出功率。


    Two sets of reflective mirrors and convex lens on both side of the Nd:YAG rod in a laser resonator can keep the output beam quality steady by adjusting the positions of these optical components. We achieved a stable beam quality with ?? / ? = 7.5% and ?w / w = 6.0% within a 70 W range. A stimulating program was built to predict the output beam quality of various resonator configurations with the methods of Gaussian beam propagation and ABCD matrix method. The “Less-Heat Generation Effect” was observed in the beam pattern variation after the lasing process started. Its influence to the stability of a laser resonator was discussed firstly. This result could also improve the description of the dynamic behavior of a lasing resonator. With the idea of “symmetric extension of resonator”, two or more single rod thermal lensing insensitive resonators could be connected in series. The resultant two or multi-rods resonator could also keep output beam quality stable, and generates much higher power as well.

    中文摘要 I 英文摘要 II 目錄 III 圖目 V 表目 X 1 前言 1 2 Nd:YAG雷射 5 2.1 固態雷射介質 5 2.1.1 基質 7 2.1.2 離子介質 7 2.2 Nd:YAG晶體 8 2.2.1 物理特性 8 2.2.2 雷射特性 9 2.3 激勵光源 13 2.3.1 電阻特性 14 2.3.2 光譜特性 17 2.3.3 輻射效率 18 2.4 激勵腔 18 2.4.1 幾何類型 19 2.4.1.1 橢圓柱激勵腔 19 2.4.1.2 緊包式激勵腔 20 2.4.2 材質 20 2.4.3 反射表面 20 2.5 冷卻與濾光 25 3 熱透鏡效應 27 3.1 理論模型 27 3.1.1 溫度梯度 29 3.1.2 光彈效應 30 3.1.3 折射率梯度 31 3.1.4 端面形變 33 3.1.5 熱透鏡效應 34 3.2 量測熱透鏡 36 3.3 平面共振腔 38 3.4 緩熱效應 42 4 單棒熱透鏡非敏共振腔 45 4.1 熱透鏡非敏共振腔 45 4.1.1 簡介 45 4.1.2 構想 46 4.2 共振腔參數 49 4.3 理論計算之模型 50 4.3.1 與 51 4.3.2 w與? 52 4.3.3 計算程式 55 4.4 計算的預測 57 4.5 實驗結果 64 4.6 緩熱效應之影響 73 5 雙棒串接共振腔 81 5.1 串接之問題 82 5.1.1 熱透鏡效應 82 5.1.2 雙折射 83 5.2 雙棒或多棒串接共振腔 84 5.3 熱效應非敏共振腔 85 5.4 模組化串接共振腔 90 6 結論 108 附錄A 符號說明 110 附錄B 高斯光束 114 附錄B 光束品質因子M2的定義及量測方法 127 參考資料 130

    參考資料
    [1] J.E. Geusic, H.M. Marcos, L.G. Van Uitert: Appl. Phys. Lett. 4 (1964) 182.
    [2] W.M. Steen: Laser Material Processing (Springer-Verlag, London, 1991) Chap. 2.
    [3] K.H. Leong and B.V. Hunter: Industrial Laser Review 11 (1996) 7.
    [4] W. Koechner: Appl. Opt. 9 (1970) 2548.
    [5] K. Yasui: Appl. Opt. 35 (1996) 2566.
    [6] C.M. Stickley: IEEE J. Quantum Electron. QE-2 (1966) 511.
    [7] J.P. Lortscher and J. Steffen: Opt. Quan. Elect. 7 (1975) 505.
    [8] D.C. Hanna, C.G. Sawyers and M.A. Yuratich: Opt. Quan. Elect. 13 (1981) 493.
    [9] H.P. Hortz, R. Ifflander and H. Weber: Appl. Opt. 20 (1981) 4124.
    [10] 閻偉中:棒型Nd3+:YAG雷射熱效應非敏共振腔之研究 (中央大學光電科學研究所博士論文,中壢市,1997)。
    [11] A.L. Schawlow, C.H. Townes: Phys. Rev. 112 (1958) 1940.
    [12] T.H. Maiman: Nature 187 (1960) 493.
    [13] P.P. Sorokin, M.J. Stevenson: Phys. Rev. Lett. 5 (1960) 557; and Acvances in Quantum Electronics (Columbia Univ. Press, New York, 1961) p. 65.
    [14] E. Snitzer: Phys. Rev. Lett. 7 (1961) 444.
    [15] L.F. Johnson, L. Nassau: Proc. IRE 49 (1961) 1704.
    [16] W. Koechner: Solid-State Laser Engineering (Springer-Verlag, Berlin, Heidelberg, 1996) 4th ed., Chap. 2, p. 30.
    [17] P.P. Sorokin, M.J. Stevenson: Phy. Rev. Lett. 5 (1960) 557.
    [18] P.F. Moulton: Handbook of Laser Science and Technology, (CRC Press, Boca Raton, FL 1986) Vol. 1, p. 21-295.
    L.G.DeShazer, S.C. Rund, B.A. Wechsler: Handbook of Laser Science and Technology (CRC Press, Boca Raton, FL, 1987) Vol. 5, p. 281-338.
    J.C. Walling: Tunable Lasers (Springer, Berlin, Heidelberg 1992) 2nd ed., Vol. 59, Chap. 9.
    [19] L. DeShazer, M. Bass, U. Ranon, T.K. Guka, E.D. Reed, T.W. Strozyk, L. Rothrock: 8th Int’l Quant. Electr. Conf., San Francisco, CA (1974).
    C.D. Brandle, J.C. Vanderleeden: IEEE J. QE-10 (1974) 67.
    [20] W. Koechner: Solid-State Laser Engineering (Springer-Verlag, Berlin, Heidelberg, 1996) 4th ed., Chap. 2, p. 52.
    [21] B. Newell, J.D. O’Brian: IEEE J. QE-4 (1968) 291.
    [22] N.L. Yeamans, J.E. Creedon: Techn. Rept. ECOM-3043, U.S. Army Electr. Comm., Ft. Monmouth, NJ (1968).
    [23] T.B. Read: Appl. Phys. Lett. 9 (1966) 342.
    [24] W. Koechner: Laser Focus World 5 (1969) 29.
    [25] M. Grasis, L. Reed: Techn. Rept. AFAL-TR-73-156, ILC Technologies, Sunnyvale, CA (1973).
    [26] W. Koechner, L. DeBenedictis, E. Matovich, G.E. Mevers: IEEE J. QE-8 (1972) 310.
    [27] S. Yoshikawa, K. Iwamoto, K. Washio: Appl. Opt. 10 (1971) 1620.
    [28] L. Noble, R. Maynard, I. Reed: Tech. Rept. R-ILC-72-5, ILC Technologies, Sunnyvale, CA (1971).
    [29] L.M. Osterink: 1969 IEEE Conf. of Laser Eng. Appl., Washington, DC (1969).
    [30] W. Koechner: Solid-State Laser Engineering (Springer-Verlag, Berlin, Heidelberg, 1996) 4th ed., Chap. 2, p. 352.
    [31] W. Koechner: Solid-State Laser Engineering (Springer-Verlag, Berlin, Heidelberg, 1996) 4th ed., Chap. 2, p. 352.
    [32] W. Koechner: Solid-State Laser Engineering (Springer-Verlag, Berlin, Heidelberg, 1996) 4th ed., Chap. 6, p. 380.
    [33] F.P. Incropera and D.P. Dewitt: Introduction to Heat Transfer (John Wiley & Sons, Inc.) 2nd ed., Chap. 3.
    [34] J.D. Foster, L.M. Osterink: J. Appl. Phys. 41 (1970) 3656.
    [35] W. Koechner, D.K. Rice: IEEE J. QE-6 (1970) 557.
    [36] H. Kogelnik: Bell Syst. Tech. J. 44 (1965) 455.
    [37] A. Gerrard and J.M. Burch: Introduction to matrix methods in optics (John Wiley & Sons, Ltd., 1975) Chap.2.
    [38] 呂百達:激光光學 (四川大學出版社,1992)第二版,第十章。
    [39] M. S. Mangir and D. A. Rockwell: IEEE J. Quantum Electron. 22 (1986) 574.
    [40] D. S. Sumida, D. A. Rockwell and M. S. Mangir: IEEE J. Quantum Electron. 24 (1988) 985.
    [41] N. Hodgson, C. Rahlff and H. Weber: Opt. & Laser Technol. 25 (1993) 179.
    [42] T. S. Chen, V. L. Anderson and O. Kahan: IEEE J. Quantum Electron. 26 (1990) 6.
    [43] T. Y. Fan: IEEE J. Quantum. Electron. 29 (1993) 1457.
    [44] Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorge, N. Garnier, E. Descroix, M. Bon and P. Laporte: Phys. Rev. B 51 (1995) 784.
    [45] J. L. Blows, T. Omatsu, J. Dawes, H. Pask and M. Tateda: IEEE Photon. Technol. Lett. 10 (1998) 1727.
    [46] D. C. Brown: IEEE J. Quantum. Electron. 34 (1998) 560.
    [47] M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson and D. C. Hanna: Phys. Rev. B 58 (1998) 16076.
    [48] B. Comaskey, B.D. Moran, G.F. Albrecht and R.J. Beach: IEEE J. Quantum. Electron. 31 (1995) 1261.
    [49] H.G. Danielmeyer and M. Blette: Appl. Phys. 1 (1973) 269.
    [50] T.S. Lomheim and L.G. DeShazer: J. Appl. Phys. 49 (1978) 5517.
    [51] T. Chuang and R. Verdum: IEEE J. Quantum Electron. 32 (1996) 79.
    [52] V. Ostroumov, T. Jensen, J.P. Meyn, G. Huber and M.A. Noginov: J. Opt. Soc. Amer. B 15 (1998) 1052.
    [53] S. Guy, C.L. Bonner, D.P. Shepherd, D.C. Hanna, A.C. Tropper and B. Ferrand: IEEE J. Quantum Electron. QE-34 (1998) 900.
    [54] L.M. Osterink and J.D. Foster: Appl. Phy. Lett. 12 (1968) 128.
    [55] H.P. Kortz, R. Ifflander and H. Weber: Appl. Opt. 20 (1981) 4124.
    [56] V. Magni: Appl. Opt. 25 (1986) 107.
    [57] G. Cerullo, S. de Silvestri, V. Magni and O. Svelto: Opt. & Quantum Electron. 25 (1993) 489.
    [58] Y.V. Bogdanov, K.V. Volodchenko, A.A. Papchenko and V.N. Sorokin: Laser Phy. 4 (1994) 467.
    [59] J. Sherman: Appl. Opt. 37 (1998) 7789.
    [60] M. Tsunekane, N. Taguchi and H. Inaba: Appl. Opt. 37 (1998) 3290.
    [61] U. Wittrock and H. Weber: Opt. Lett. 16 (1991) 1092.
    [62] W.C. Yen, C.T. Huang, H.P. Liu and L.P. Lee: Opt. & Laser Technol. 29 (1997) 57.
    [63] W.C. Yen, and H.P. Liu: Opt. & Laser Technol. 29 (1997) 301.
    [64] K.P. Driedger., B. Lu and H. Weber: Opt. ACTA 32 (1985) 847.
    [65] C.C. Cheng, T.L. Huang, S.H. Chang, H.S. Tsai and H.P. Liu: Jpn. J. Appl. Phys. 39 (2000) June.
    [66] V. Magni: J. Opt. Soc. Am. A 4 (1987) 1962.
    [67] K.P. Driedger, R.M. Ifflander and H. Weber: IEEE J. Quantum Electron. 24 (1988) 665.
    [68] M. Kumkar, B. Wedel and K. Richter: Opt. & Laser Technol. 24 (1992) 67.
    [69] K. Yasui: Appl. Opt. 35 (1996) 2566.
    [70] T. Graf, J.E. Balmer, R. Weber and H.P. Weber: Opt. Commu. 135 (1997) 171.
    [71] M. Ohmi, M. Akatsuka, K. Ishikawa, K. Naito, Y. Yonezawa, Y. Nishida, M. Yamanaka, Y. Izawa, S. Nakai: Appl. Opt. 33 (1994) 6368.
    [72] H.J. Eichler, A. Haase, R. Menzel, A. Siemoneit: J. Phys. D 26 (1993) 1884.
    [73] W. Koechner: Solid-State Laser Engineering (Springer-Verlag, Berlin, Heidelberg, 1996) 4th ed., Chap. 2, p. 408.
    [74] Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller and U. Wittrock: Opt. & Quant. Electron. 28 (1996) 57.
    [75] W.C. Scott and M. de Wit: Appl. Phys. Lett. 18 (1971) 3.
    [76] J. Richards: Appl. Opt. 26 (1987) 2514.
    [77] J.R. Park, J.Y. Lee, H.S. Kim, K.Y. Um and H.J. Kong: Opt. Rev. 4 (1997) 170.
    [78] C.C Cheng, S.H Chang, M.F. Chang and H.P Liu: International Photonics Conference 1998, TAIPIE (1998) 170
    [79] J.M. Eggleston: IEEE J. Quantum Electron. 24 (1988) 1821.
    [80] A.E. Siegman: SPIE 1224 (1990) 2.
    [81] T.F. Johnston and Jr.: Laser Focus World 26 (1990) 173.
    [82] M.W. Sasnett: The Physics and Technology of Laser Resonators (Adam Hilger, New York, 1989) Chap. 9.
    [83] A. Gerrard and J.M. Burch: Introduction to Matrix Methods in Optics (John Wiley & Sons Ltd., 1975) Chap. 3.
    [84] H. Kogelnik: Bell Syst. Tech. J. 44 (1965) 455.

    QR CODE
    :::