跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃浩宸
Hao-chen Huang
論文名稱: 探討可控式包埋Saccharomyces cerevisiae對於乙醇醱酵之影響
The study of controllable immobilization product ethanol by Saccharomyces cerevisiae
指導教授: 徐敬衡
Chin-hang Shu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 包埋乙醇酵母可控式
外文關鍵詞: immobilization, Saccharomyces cerevisiae, ethanol
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於全球石化能源逐漸耗竭及原油價格高漲,尋找永續再生性的新能源已成為一個國家賴以生存及發展經濟所必須努力的目標。厭氧產氫、甲烷,生質乙醇(bioethanol)及生質柴油(biodiesel)等綠色能源的發展受到重視。
    本論文以傳統式包埋Saccharomyces cerevisiae 作為控制組,設計立即式包埋法( in-situ immobilization )與可控式包埋法 (controllable immobilization)進行比較,而立即式包埋法可以改善傳統式包埋結構、質傳問題,可控式與立即式的差異在於,多了菌體釋出步驟,使得菌體利用基質的效率更佳。
    以100 g/L、200 g/L的葡萄糖,探討立即式與可控式於乙醇醱酵之可行性,結果發現,Saccharomyces cerevisiae 於100 g/L葡萄糖下,立即式、可控式包埋法較傳統式包埋之產率多了約1.35倍,於200 g/L葡萄糖下,在基質與乙醇濃度的抑制下仍有良好的產率,立即式與可控式分別高於傳統包埋1.28與1.15倍,相同條件下,立即式包埋的菌體活性幾乎維持95 %之間,而傳統式會隨之遞減至93 %,導致乙醇總產量與轉化率不及於立即式。


    Ethanol use as a fuel additive or directly as a fuel source has grown in popularity due to governmental regulations and in some cases economic incentives based on environmental concerns as well as a desire to reduce oil dependency.
    There are two-type designs which in-situ immobilization and controllable immobilization respectively are to improve the mass transfer problems of traditional immobilization and comparative study of ethanol production by Saccharomyces cerevisiae cells in traditional and in-situ immobilization .
    To study the feasibility of ethanol fermentation which in-situ and controllable immobilization can scale up and industrialize , then using 100 and 200 g/L glucose as feedstock in 2.0L bubble column .The results as shown, in 100 g/L glucose , the productivity of in-situ and controllable immobilization more than traditional immobilization by 1.35 times. In 200 g/L glucose, the ethanol concentration and productivity in the matrix is remain stable, and in-situ and controllable immobilization still up to 1.28 and 1.15 times than traditional immobilization. In this condition, the viability of in-situ immobilization almost maintain about 95% , but the viability of traditional immobilization would decrease progressively to 93% .

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VIII 表索引 XIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 1 第二章 文獻回顧 2 2-1 真菌 2 2-1-1真菌介紹 2 2-1-2真菌分類表 3 2-1-3酵母菌(Saccharomyces cerevisiae)之介紹 4 2-2 再生能源 9 2-2-1 再生能源之介紹 9 2-2-2 生質能源發展及應用 9 2-2-3 生質乙醇 11 2-3 微生物固定化 17 2-3-1 固定化發展 17 2-3-2 固定化方法 19 2-3-3固定化對生長速率的影響 24 2-3-4固定化對微生物活性的影響 26 2-4海藻酸鈉、海藻酸鈣的介紹 29 2-4-1 海藻酸鈉簡介 29 2-4-2 海藻酸鈉鈣 30 2-4-3 影響海藻酸鈉鈣強度之因子 31 2-4-3-1 海藻酸鈉濃度 31 2-4-3-2 氯化鈣濃度 31 2-4-3-3 浸泡於氯化鈣之時間 31 2-4-3-4 pH值 32 第三章 實驗規劃、材料與方法 33 3-1 實驗規劃 33 3-2 實驗材料 33 3-2-1 實驗菌株 33 3-2-2實驗藥品 34 3-2-3 實驗儀器及其他設備 35 3-3實驗方法 36 3-3-1 菌種保存 36 3-3-2 培養基組成 36 3-3-3包埋固定化製備 38 3-3-4酵母菌於不同濃度氯化鈣及海藻酸鈉中的影響 44 3-3-5不同濃度氯化鈣及海藻酸鈉之菌體回收率的研究 45 3-3-6以重複式批次醱酵進行傳統包埋與立即式包埋固定化之研究 45 3-4 分析方法 47 3-4-1 分析流程 47 3-4-2細胞乾重及細胞密度對光學密度之檢量線 48 3-4-3葡萄糖殘量分析: 48 3-4-4乙醇濃度之分析 50 3-4-5 MTS assay 細胞活性測試 51 3-4-6掃描式電子顯微鏡 52 第四章 實驗結果與討論 53 4-1比較傳統式包埋、立即式包埋及可控式包埋之製程方法 53 4-2酵母菌於不同濃度的氯化鈣、海藻酸鈉與檸檬酸鈉之影響 54 4-3不同濃度氯化鈣及海藻酸鈉之菌體回收率的研究 58 4-3-1材料特性測試 58 4-3-2立即式與可控式方法之差異 60 4-4搖瓶實驗培養 62 4-4-1重複批次醱酵 (Repeated batch) 62 4-5菌體的表面型態 67 4-6氣泡塔反應槽培養 73 4-6-1傳統式與立即式於100g/L葡萄糖醱酵槽培養之討論 73 4-6-2傳統式與立即式於100g/L葡萄糖醱酵槽之菌體活性測試 73 4-6-3可控式於100 g/L葡萄糖醱酵槽培養之討論 74 4-6-4傳統式與立即式於200 g/L葡萄糖醱酵槽培養之討論 81 4-6-5傳統式與立即式於200 g/L葡萄糖醱酵槽之菌體活性測試 81 4-6-6可控式於200 g/L葡萄糖醱酵槽培養之討論 82 第五章 結論與相關建議 89 5-1結論 89 5-2建議 90 第六章 參考文獻 91

    經濟部能源局,能源產業技術白皮書,P238.。
    野本正雄固定化酵素,酵素工學,株式會社學會出版(1999),第五章57-173。
    陳國誠,生物固定化技術與產業應用,茂昌圖書,1990,P.353。
    吳國芳、馮志堅,植物學,高等教育出版社,2000。
    陳裕星、洪梅珠、林秀儒,釀酒用酵母菌的篩選與鑑定,農政與農情,2005 年1月第151期。
    劉圈烯、何雲、齊勝利、王成章、陳繼紅、潘俊良、王彥準,光敏色素研究進展,中國農學通報,2005年五月第21卷第5期。
    林子琦, 利用褐藻酸鈣膠囊化雙叉桿菌之耐酸性與儲存安定性 ,國立臺灣大學食品科技研究所碩士論文,2001。
    蔡文慶, 生質乙醇的生產與發展現況, 朝陽科技大學應用化學系碩士論文,2010。
    洪永杰、許博爾, 纖維素轉換生質乙醇技術專利檢索與分析報告,元智大學最佳化實驗室,2005。
    黃禮彥,以濃醪發酵技術利用高梁生產乙醇之研究,大同大學生物工程學系(所),2008
    黃俊凱,探討光照對Saccharomyces cerevisiae生產乙醇之影響,國立中央大學化學工程與材料工程研究所碩士論文,2008。
    Abbi M., Kuhad R.C., Singh A., Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501, J. Ind. Microbiol, 17, 20–23 (1996).
    Ani Idris, Wahidin Suzana, Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii, PROCESS BIOCHEM, 41, 1117-1123 (2006).
    Bailey J.E., Ollis D.F., Appli enzyme catalysis., Biochemical Engineering fundamentals, Chapter4. McGraw-Hill, Singapore. 157-226 (1986).
    Behera S., Kar S., Mohanty R.C., Ray R.C., Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomces cerevisiaecells immobilized in agar agar and Ca-alginate matrices, Appl Energy 87, pp. 96–100 (2010).
    Bingjun Yu,Fuming Zhang,Yuguo Zheng,Pu Wang,Alcohol fermentation from the mash of dried sweet potato with itsdregs using immobilized yeast,Process Biochemistry Vol. 31,No.,pp 1-6,(1996).
    Bickerstaff G.F., Immobilization of enzymes and cells. In methods in Biotechnology, vol.1. : Immobilization of enzymes and cells. Bickerstaff GF(ed.), Humana Press, Totowa, New Jersey, pp.1-11 (1977).
    Cheetham P.S.J., Blunk K.W., Bucke C., Physical studies on cell immobilization using calcium alginate gels., Biotechnol Bioeng 21, 2155-2168 (1979).
    Chen K.C., Huang C.T., Effects of the growth of Trichosporon cutaneum in calcium alginate gel beads upon bead structure and oxygen transfer characteristics, Enzyme Microb Technol,10,284–92 (1988).
    Chen S.C., Wu Y.C., Mi F.L., Lin Y.H., Yu L.C., Sung H.W., A novel pH sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery, Journal of Controlled Release, 96(2), 285-300 (2004).
    Chibata I., Preparetion of immobilized enzymes and microbial cells. Immobilized Enzymes, Chapter2. Halsted Press, New York, 9-107 (1978).
    Chun G.T., Agathos S.N., Comparative studies of physiological and environmental effects on the production of cyclosporin A in suspended and immobilized cells of Tolypocladium inflatum, Biotechnol Bioeng, 37,256–65 (1991).
    Duff SJB., Use of colloidal particles to improve the biocatalytic activity of microorganisms, Agric Biol Chem, 54, 1879–82 (1990).
    Francisco B., Pereiraa, Pedro M.R., Guimaraesa, Jose A., Teixeiraa, Lucilia Domingues, Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations, J BIOSCI BIOENG, In press
    Fundueanu G., Nastruzzi C., Carpov A., Desbrieres J., Rinaudo M., Physico-chemical characterization of Ca-alginate microparticles produced with different methods, Biomaterials, 20, 1427-1435 (1999).
    Galazzo J.L., Bailey J.E., Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol, Biotechnol Bioeng, 36,417–26 (1990).
    Grant G.T., Morris E.R., Rees D.A., Smith P.J., Thom D., Biological interactions between polysaccharides and divalent cations. Egg-boxmodel, FEBS Lett 32, 195 (1973).
    G.-A. Junter, L. Coquet, S. Vilain and T. Jouenne, Immobilized-cell physiology: current data and the potentialities of proteomics,Enzyme Microb. Technol. 31 (2002)
    Hartmeier W., Methods of immobilization. Immobilized biocatalysts, Chapter2. Heidelberg New York, 9-107 (1988).
    Hoppe, G. K., Hansford G. S., The effect of micro-aerobic conditions on continuous ethanol production by Saccharomyces cerevisiae. Biotechnol. Lett. 6 (10), 681-686 (1984).
    Ingledew W.M., Alcohol production by Saccharomyces cerevisiae: a yeast primer, in the alcohol textbook (3rd ed.), Nottingham University Press, UK (1999).
    Kar S., Ray R.C., Statistical optimization of a-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology., Pol JMicrobiol, 57, 49-57 (2008).
    Klibanov A.M., Immobilized enzymes and cells as priactical catalysts. Science. 219, 722-727 (2005).
    Kim H., Choi B., The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine, Renew Energ, 35, pp. 157–163 (2010).
    Kourkoutas Y., Bekatorous A., Banat I.M., Marchant R., Koutinas A.A., Immobilization technologies and support materials suitable in alcohol beverages production: review, Food Microbiol 21 (2004).
    Larsson P.O., Ohlson S.O., Mosbach K., New approach to steroid conversion using activated immobilized microorganism. Nature. 263, 796-797(1976).
    Madigan M.T., Martinko J.M. Parker J., Nutrition and metabolism, Brock biology of microbiology (9th ed.), Prentice-Hall, NJ (2000).
    Mateo C., Palomo J.M., Fernandez-Lorente G, Guisan J.M., Fernandez-Lafuente R., Improvement of enzyme activity, stability and selectivity via immobilization techiques. Enzyme and Microbial Technology. 40, 1451-1463 (2007).
    Martinsen A., Skjak-Brak G., Smidsrod O., Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol Bioeng 33, 79-89 (1989).
    Milovanovic A., Bozic N. Vujcic Z., Cell wall invertase immobilization within calcium alginate beads, Food Chem. 104, pp. 81–86 (2007).
    Monbouquette H.G., Ollis D.F.,Scanning microfluorimetry of Ca-alginate immobilized Zymomonas mobilis, Biotechnology, 6, 1076–9 (1988).
    Mussatto S.I., Dragone G., Guimaraes P.M.R., Silva J.P., Carneiro L.M.,. Roberto I.C, Vicente A., Domingues L., Teixeira J.A., Technological trends, global market, and challenges of bio-ethanol production, Biotechnol. Adv. 28, pp. 817–830 (2010).
    Najafpour G., Habibollah Y., Ismail K.S.K., Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae, Bioresour Technol 92 (3), pp. 251–260 (2004).
    Norton S, D’Amore T., Physiological effects of yeast cell immobilization: applications for brewing, Enzyme Microb Technol , 16, 365–75 (1994).
    Ogbonna J.C., Amano Y., Nakamura K., Elucidation of optimum conditions for immobilization of viable cells by using calcium alginate, Fermentation Bioeng 67(2), 92-96 (1989).
    Omar S.H.,Oxygen diffusion through gels employed for immobilization. Part 2. In the presence of microorganisms., Appl Microbiol Biotechnol,40, 173–81 (1993).
    Prakasham R.S., Kuriakose B., Ramakrishna S.V., The influence of inert solids on ethanol production by Saccharomyces cerevisiae., Appl Biochem Biotechnol, 82, 127–34 (1999).
    Prasad B., Mishra I.M., On the kinetics and effectiveness of immobilized whole-cell batch cultures, Biores. Technol., 53, 269-275 (1995).
    Rakin M., Mojovic L., Nikolic S., Nedovic V., Bioethanol production by immobilized Saccharomyces cerevisiae var.ellipsoideus cells, Afr.J.Biotechnol., vol.8, p. 464-471 (2009).
    Sobeck D.C., Higgins M.J., Examination of three theories for mechanisms of cation-induced bioflocculation, Water Research, 36 (3), pp. 527–538 (2002).
    Taipa M.A., Cabral J.M.S., Santos H., Comparison of glucose fermentation by suspended and gel-entrapped yeast cells: an in vivo nuclear magnetic resonance study., Biotechnol Bioeng, 41,647–53 (1993).
    Tosa T, Shibatani T., Industrial application of immobilized biocatalysts in Japan. Annals of the New York Academy of Sciences. 750, 364-375 (1995).
    Tong X.D., Xue B., Sun Y., A novel magnetic affinity support for protein adsorption and purification. Biotechnology Progress. 17,134-139 (2001).
    Van Iersel M.F.M., Brouwer-Post E., Rombouts F.M., Abee T., Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer., Enzyme Microb Technol, 26, 602–7 (2000).
    Yan Li, Min Hu, Yumin Du, Hang Xiao, David Julian McClements, Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads, Food Hydrocolloids, 25, 122-130 (2011).
    Yufei Ma, Qingling Feng, Alginate hydrogel-mediated crystallization of calcium carbonate, Journal of Solid State Chemistry, 184 1008–1015 (2011).

    QR CODE
    :::