跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅仕昊
Shin-Hao Lo
論文名稱: 下行波束成型多載波非正交多重接取技術與使用者分組及資源演算法設計使系統通道容量最大化
User Pairing and Allocation Designs for Capacity Maximization in Downlink Beamforming Multicarrier NOMA Systems
指導教授: 陳永芳
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: 五代通訊非正交多重接取正交分頻多重接取連續干擾消除波束成型頻率複用
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個以正交分頻多工(OFDM)為背景,結合多載波多天線非正交多重接取(NOMA)的下行系統,結合使用者分組的演算法與子載波配置迭代演算法,來有效的提升整體系統通道容量。在非正交多重接取系統的性質下,每個子載波能服務兩個或兩個以上的使用者來進行傳輸資料,進而提升系統效能,但在多天線架構下傳輸,同組使用者之間會因為同個頻帶傳輸而收到來自同一組使用者的干擾(Co-channel Interference),也會收到來自其他天線的干擾(Inter-group Interference),而這些干擾是非正交多重接取系統非常常見的,此論文採取 Zero-forcing Beamforming (ZFBF) 的方式來消除其他天線的干擾,同時採用Success Interference cancellation (SIC)消除來自傳輸功率大的使用者干擾。在NOMA系統中,通道增益大者我們視為強使用者(Strong User),反之則稱為弱使用者(Weak User),而我們將強使用者視為主要傳輸的使用者,會在本論文的限制中確保資料傳輸不會單獨發生在弱使用者身上。
    在本篇論文中將會探討三個主要方向:一、各組中的使用者該如何挑選,才能將系統通道容量最大化。二、在進行子載波配置時,若同時傳送強使用者與弱使用者的通道容量高於單獨傳送強使用者,則會選擇以NOMA形式傳送,反之若單獨傳送強使用者的通道容量高於NOMA形式傳輸,則會以強使用者的形式進行傳輸,以迭代的方式來找出最大化通道容量。最後針對不同的使用者挑選,搭配上子載波配置來達到最佳的整體系統通道容量。
    本論文所提出的非正交多重接取資源配置的設計,在模擬結果中,可看出隨機選取或隨機子載波配置與本論文的方法相比,有明顯的系統通道容量提升。


    In this thesis, we propose user pairing, subcarrier allocation, and power control algorithms in Downlink beamforming multicarrier nonorthogonal multiple access (MC-NOMA) systems to maximize system capacity. In this system, every subcarrier can be assigned to two or more users for transmitting data. After executing the user pairing algorithm, every subcarrier is distributed to a cluster which includes groups of users for data delivery. Each group have two users, which are a strong user (SU) and a weak user (WU). If the NOMA transmission is not better than orthogonal multiple access (OMA), we guarantee all subcarriers are allocated to the SU in the system. The proposed method is composed of three parts. First, we propose a user pairing algorithm, then apply allocation designs and power control to maximize sum capacity. The simulation results illustrate that the proposed algorithm outperforms the OFDMA system.

    Contents Abstract iii Contents iv List of Figures vi List of Tables vii Chapter1. Introduction 1 1.1 Non-Orthogonal Multiple Access 1 1.2 Multiple-Input single-output 2 1.3 Zero-forcing Beamforming 3 1.4 Organization 3 1.5 Contribution 4 1.6 Abbreviations 4 1.7 Notation 5 Chapter2. System Model and Problem Formulation 6 2.1 Non-Orthogonal Multiple Access System 6 2.2 Problem Formulation 14 Chapter 3. Allocation Designs 15 3.1 Proposed User Pairing Scheme 15 3.2 Proposed Iteration Subcarrier Allocation Scheme 20 Chapter 4. Simulation model and results 25 4.1 Simulation Model 25 4.2 Performance of NOMA resource allocation 26 Chapter 5. Complexity analysis 30 Chapter 6. Conclusion 31 Reference 31

    [1] Z. Ding, P. Fan, and H. Vincent Poor, “Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions,” IEEE Trans. Veh. Technol. vol. 65, no. 8, pp. 6010-6023, Aug. 2016.
    [2] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for Cellular Future Radio Access,” in Proc. VTC-Spring, Dresden, Germany, pp. 1-5, Jun. 2013.
    [3] H. Sari, A. Maatouk, E. Caliskam, M. Assaad, M. Koca, and G. Gui, “On the foundation of NOMA and its application to 5G cellular networks,” IEEE Wireless Communications. and Networking Conference, Barcelona, Spain, Apr. 2018.
    [4] S. M. R. Islam, N. Avazov, O. A. Dobre and K. Kwak, "Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges," in IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 721-742, Secondquarter 2017.
    [5] Y. Huang, C. Zhang, J. Wang, Y. Jing, L. Yang, and X. You, “Signal processing for MIMO-NOMA: present and future challenges,” IEEE Journals & Magazines, vol. 25, no. 2, pp. 32-38, Apr. 2018.
    [6] L. Dai, B. Wang, Y. Yuan, S. Han, C. I, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Magazine, vol. 53, no. 9, pp. 74-81, Sep. 2015.
    [7] Q, Li and H, Niu, Papathanassiou, A., et al.: “5G network capacity: Key elements and technologies”, IEEE Veh. Technol. Mag., pp. 7178, Sep. 2014.
    [8] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen and L. Hanzo, "A Survey of Non-Orthogonal Multiple Access for 5G," in IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2294-2323, thirdquarter 2018.
    [9] S. Tomida and K. Higuchi, “Non-orthogonal access with SIC in cellular downlink for user fairness enhancement,” in Proc. International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), Chiang Mai, Thailand, pp.1-6, Dec. 2011.
    [10] B. Kim, S. Lim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee, and D. Hong, “Non-orthogonal multiple access in a downlink multiuser beamforming system,” in Proc. IEEE MILCOM, San Diego, CA, USA, pp. 1278-1283, Nov. 2013.
    [11] C. Piccoli, S. Tomasin and E. Jorswieck, "Beamformer Design and Power Allocation for Two-Cluster Two-User NOMA System," 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, pp. 370-375, 2018.
    [12] M. Tian, Q. Zhang, S. Zhao, Q. Li and J. Qin, "Robust Beamforming in Downlink MIMO NOMA Networks Using Cutting-Set Method," in IEEE Communications Letters, vol. 22, no. 3, pp. 574-577, March 2018.
    [13] K. Saito, A. Benjebbour, Y. Kishiyama, Y. Okumura and T. Nakamura, "Performance and design of SIC receiver for downlink NOMA with open-loop SU-MIMO," 2015 IEEE International Conference on Communication Workshop (ICCW), London, pp. 1161-1165, 2015.
    [14] Z. Shen, R. Chen, l. G. Andrews, R. W. Heath and B. L. Evans, “Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,” IEEE Transactions on Signal Processing, vol.54, pp. 3658-3663, Sep. 2006.
    [15] S. Ali, E. Hossain and D. I. Kim, "Non-Orthogonal Multiple Access (NOMA) for Downlink Multiuser MIMO Systems: User Clustering, Beamforming, and Power Allocation," in IEEE Access, vol. 5, pp. 565-577, 2017.
    [16] G. Nain, S. S. Das and A. Chatterjee, "Low Complexity User Selection With Optimal Power Allocation in Downlink NOMA," in IEEE Wireless Communications Letters, vol. 7, no. 2, pp. 158-161, April 2018.
    [17] L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 8580-8594, Oct. 2016.
    [18] S. M. R. Islam, M. Zeng, O. A. Dobre and K. Kwak, "Resource Allocation for Downlink NOMA Systems: Key Techniques and Open Issues," in IEEE Wireless Communications, vol. 25, no. 2, pp. 40-47, April 2018.
    [19] S. Zhang, B. Di, L. Song, and Y. Li, “Sub-channel and power Allocation for Non-Orthogonal Multiple Access Relay Networks with amplify-and-forward protocol,” IEEE Trans. Wireless Commun, vol. 16, no. 4, pp. 2249-2261, Mar. 2017.
    [20] H. Xing, Y. Liu, A. Nallanathan, Z. Ding and H. V. Poor, "Optimal Throughput Fairness Tradeoffs for Downlink Non-Orthogonal Multiple Access Over Fading Channels," in IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 3556-3571, June 2018.
    [21] P. D. Diamantoulakis and G. K. Karagiannidis, “Maximizing proportional fairness in wireless powered communications,” IEEE Wireless Commun. Lett., vol. 6, no. 2, pp. 202-205, Apr. 2017.
    [22] S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple access in 5G systems,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1647–1651, Oct. 2015.
    [23] H. Xing, Y. Liu, A. Nallanathan and Z. Ding, "Sum-rate maximization guaranteeing user fairness for NOMA in fading channels," 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, pp. 1-6, 2018.
    [24] H. Xing, Y. Liu, A. Nallanathan, Z. Ding and H. V. Poor, "Optimal Throughput Fairness Tradeoffs for Downlink Non-Orthogonal Multiple Access Over Fading Channels," in IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 3556-3571, June 2018.
    [25] X. Li, C. Li and Y. Jin, "Dynamic Resource Allocation for Transmit Power Minimization in OFDM-Based NOMA Systems," in IEEE Communications Letters, vol. 20, no. 12, pp. 2558-2561, Dec. 2016.
    [26] J. Zeng et al., "Investigation on Evolving Single-Carrier NOMA Into Multi-Carrier NOMA in 5G," in IEEE Access, vol. 6, pp. 48268-48288, 2018.
    [27] Z. Ding and H. V. Poor, "Design of Massive-MIMO-NOMA With Limited Feedback," in IEEE Signal Processing Letters, vol. 23, no. 5, pp. 629-633, May 2016.
    [28] A. Benjebbour and Y. Kishiyama, "Combination of NOMA and MIMO: Concept and Experimental Trials," 2018 25th International Conference on Telecommunications (ICT), St. Malo, pp. 433-438, 2018.
    [29] Q. Sun, S. Han, C. I and Z. Pan, "On the Ergodic Capacity of MIMO NOMA Systems," in IEEE Wireless Communications Letters, vol. 4, no. 4, pp. 405-408, Aug. 2015.
    [30] X. Sun, N. Yang, S. Yan, Z. Ding, D. W. K. Ng, C. Shen, and Z. Zhong, “Joint beamforming and power allocation in downlink NOMA multiuser MIMO networks,” IEEE Trans. Wireless Commun., vol. 17, no. 8 pp. 5367-5381, Aug. 2018.
    [31] W. Cai, C. Chen, L. Bai, Y. Jin, and J. Choi, “Subcarrier and power allocation scheme for downlink OFDM-NOMA systems,” IET Signal Process., vol. 11, no. 1, pp. 51-58, Feb. 2017.
    [32] Y. Fu, L. Salaun, C. W. Sung and C. S. Chen, "Subcarrier and Power Allocation for the Downlink of Multicarrier NOMA Systems," in IEEE Transactions on Vehicular Technology, Oct. 2018.
    [33] Y. F. Chen and J. W. Chen, “A Fast Subcarrier, Bit, and Power Allocation Algorithm for Multiuser OFDM-Based Systems,” IEEE Trans. Veh. Technol. vol. 57, no. 2, pp. 873-811, Mar. 2008
    [34] W. H. Hsueh and Y.F. Chen, “Resource allocation for NOMA in multiuser multicarrier systems,” in Proc. 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, pp. 1626-1629, May 2017.

    QR CODE
    :::