| 研究生: |
劉馥榮 Fu-Rung Liu |
|---|---|
| 論文名稱: | Linearization or Not. A Numerical Study of Two Solution Algorithms for Quadratic PDE Eigenvalue Problems. |
| 指導教授: |
黃楓南
Feng-Nan Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 二次特徵值 、特徵值 、線性化 |
| 外文關鍵詞: | Krylov-Schur |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們將有系統地研究兩種用於解二次特徵值問題(QEPs)的演算法,包含線性化方法與多項式 Jacobi-Davidson (JD) 方法。這些特徵值問題在計算科學和工程中有重要的應用,像是聲學中的噪音控制、結構工程中的穩定性分析和電子工程。在線性化方法中,QEP被線性化為伴隨的廣義特徵值問題 (GEVP),且解決了所得到的GEVP。另一方面,JD 方法是直接去找目標特徵值。我們使用一個 Matlab-based 的工具, a collection of nonlinear eigenvalue problems (NLEVP) 產生大量具有差異性值的矩陣來做數值實驗,並用 robustness, accuracy 和 efficiency 來評估效率問題。
We numerically investigate the numerical performance of two solution algorithms for the quadratic eigenvalue problems (QEP's), namely the linearization approach and the polynomial Jacobi-Davidson method. Such eigenvalue computations play an important role and highly-demanded in many computational sciences and engineering applications, such as the noise control in the acoustical design, stability analysis in the structural engineering, and electronic engineering. In the linearization approach, the QEP is linearized as a companion generalized eigenvalue problems (GEVP's), and then a variety of linear eigensolvers are solved the resulting GEVP's. On the other hand, the polynomial Jacobi-Davidson method targets the eigenvalue of interests directly without any transformation. The evaluation metrics are the robustness, accuracy, and efficiency. To draw the conclusion for more general situations, we conduct intensive numerical experiments for a large number of test cases generated by a collection of Nonlinear Eigenvalue Problem (NLEPV), with a various problem size and different coefficient matrices properties.
[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H.A. van der Vorst. Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,
2000.
[2] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev.,
43:235–286, 2001.
[3] T. Betcke, N.J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP:
A collection of nonlinear eigenvalue problems. ACM T. Math Software, 39:1–28,
2013.
[4] G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method
for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17:401–425, 1996.
[5] G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method
for linear eigenvalue problems. SIAM Rev., 42:267–293, 2000.
[6] M. Hochbruck and D. Löchel. A multilevel Jacobi-Davidson method for polynomial
PDE eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput.,
32:3151–3169, 2010.
[7] T.-M. Huang, F.-N. Hwang, S.-H. Lai, W. Wang, and Z.-H. Wei. A parallel
polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems.
Comput. Fluids, 45:207–214, 2011.
[8] F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. A parallel additive
Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue
problems in quantum dot simulation. J. Comput. Phys., 229:2932–2947, 2010.
[9] T.-M. Hwang, W.-W. Lin, J.-L. Liu, and W. Wang. Jacobi-Davidson methods
for cubic eigenvalue problems. Numer. Linear Algebra Appl., 12:605–624, 2005.
[10] N.J. Higham, D.S. Mackey, F. Tisseur, and S.D. Garvey. Scaling, sensitivity
and stability in the numerical solution of quadratic eigenvalue problems. Int.
J. Numer. Meth. Engrg., 73:344–360, 2008.
[11] K. Meerbergen. Locking and restarting quadratic eigenvalue solvers. SIAM J.
Sci. Comput., 22(5):1814–1839, 2001.
[12] V. Hernandez, J.E. Roman, and V. Vidal. SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems. ACM T. Math Software, 31:351–
362, 2005.
[13] T.-M. Huang, W. Wang, and C.-T. Lee. An efficiency study of polynomial
eigenvalue problem solvers for quantum dot simulations. Taiwanese J. Math.,
14:999–1021, 2010.