跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉馥榮
Fu-Rung Liu
論文名稱: Linearization or Not. A Numerical Study of Two Solution Algorithms for Quadratic PDE Eigenvalue Problems.
指導教授: 黃楓南
Feng-Nan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 40
中文關鍵詞: 二次特徵值特徵值線性化
外文關鍵詞: Krylov-Schur
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們將有系統地研究兩種用於解二次特徵值問題(QEPs)的演算法,包含線性化方法與多項式 Jacobi-Davidson (JD) 方法。這些特徵值問題在計算科學和工程中有重要的應用,像是聲學中的噪音控制、結構工程中的穩定性分析和電子工程。在線性化方法中,QEP被線性化為伴隨的廣義特徵值問題 (GEVP),且解決了所得到的GEVP。另一方面,JD 方法是直接去找目標特徵值。我們使用一個 Matlab-based 的工具, a collection of nonlinear eigenvalue problems (NLEVP) 產生大量具有差異性值的矩陣來做數值實驗,並用 robustness, accuracy 和 efficiency 來評估效率問題。


    We numerically investigate the numerical performance of two solution algorithms for the quadratic eigenvalue problems (QEP's), namely the linearization approach and the polynomial Jacobi-Davidson method. Such eigenvalue computations play an important role and highly-demanded in many computational sciences and engineering applications, such as the noise control in the acoustical design, stability analysis in the structural engineering, and electronic engineering. In the linearization approach, the QEP is linearized as a companion generalized eigenvalue problems (GEVP's), and then a variety of linear eigensolvers are solved the resulting GEVP's. On the other hand, the polynomial Jacobi-Davidson method targets the eigenvalue of interests directly without any transformation. The evaluation metrics are the robustness, accuracy, and efficiency. To draw the conclusion for more general situations, we conduct intensive numerical experiments for a large number of test cases generated by a collection of Nonlinear Eigenvalue Problem (NLEPV), with a various problem size and different coefficient matrices properties.

    摘 要 iv Abstract v Contents vi Tables vii Figures viii 1 Introduction 1 2 QEP solvers in SLEPc 4 2.1 Linearization approach 4 2.2 The shift-and-invert technique 6 2.3 Scaling techniques 6 2.4 Jacobi-Davidson method 7 3 Numerical results 12 3.1 Test cases 12 3.2 Statistics 12 3.3 Robustness 13 3.4 Accuracy 16 3.5 Efficiency 19 3.6 Speedup 25 4 Conclusions 27 References 28 Appendix 30

    [1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H.A. van der Vorst. Templates
    for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,
    2000.
    [2] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev.,
    43:235–286, 2001.
    [3] T. Betcke, N.J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP:
    A collection of nonlinear eigenvalue problems. ACM T. Math Software, 39:1–28,
    2013.
    [4] G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method
    for linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17:401–425, 1996.
    [5] G.L.G. Sleijpen and H.A. van der Vorst. A Jacobi-Davidson iteration method
    for linear eigenvalue problems. SIAM Rev., 42:267–293, 2000.
    [6] M. Hochbruck and D. Löchel. A multilevel Jacobi-Davidson method for polynomial
    PDE eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput.,
    32:3151–3169, 2010.
    [7] T.-M. Huang, F.-N. Hwang, S.-H. Lai, W. Wang, and Z.-H. Wei. A parallel
    polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems.
    Comput. Fluids, 45:207–214, 2011.
    [8] F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. A parallel additive
    Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue
    problems in quantum dot simulation. J. Comput. Phys., 229:2932–2947, 2010.
    [9] T.-M. Hwang, W.-W. Lin, J.-L. Liu, and W. Wang. Jacobi-Davidson methods
    for cubic eigenvalue problems. Numer. Linear Algebra Appl., 12:605–624, 2005.
    [10] N.J. Higham, D.S. Mackey, F. Tisseur, and S.D. Garvey. Scaling, sensitivity
    and stability in the numerical solution of quadratic eigenvalue problems. Int.
    J. Numer. Meth. Engrg., 73:344–360, 2008.
    [11] K. Meerbergen. Locking and restarting quadratic eigenvalue solvers. SIAM J.
    Sci. Comput., 22(5):1814–1839, 2001.
    [12] V. Hernandez, J.E. Roman, and V. Vidal. SLEPc: A scalable and flexible
    toolkit for the solution of eigenvalue problems. ACM T. Math Software, 31:351–
    362, 2005.
    [13] T.-M. Huang, W. Wang, and C.-T. Lee. An efficiency study of polynomial
    eigenvalue problem solvers for quantum dot simulations. Taiwanese J. Math.,
    14:999–1021, 2010.

    QR CODE
    :::