| 研究生: |
盧彥丞 Lu-Yen-Cheng |
|---|---|
| 論文名稱: |
合成13,14-二取代二並苯[b,j][4,7]菲啶作為研究π-π作用力的平臺 Synthesis of 13,14-disubstituted dibenzo[b,j][4,7]phenanthroline as the platform to study π-π interaction |
| 指導教授: |
林質修
Chih-Hsiu Lin 侯敦仁 Duen-Ren Hou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 216 |
| 中文關鍵詞: | π-π作用力 |
| 外文關鍵詞: | π-π interaction |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究方向為將1,4-環己二酮與鄰位胺基之苯酮透過Friedländer縮和反應,一步建構出13,14號位 (躺椅區)雙取代 dibenzo [b,j][4,7] phenanthroline。在此系列中,我們提供了兩個取代基在擁擠環境中的新的立體參數 (不同於A value或B value);而當取代基均為苯環系統時,我們可以初步探討π-π 作用力是如何影響分子動力學及構型分佈。
本論文探討的方式為以下三種 (1) 我們透過變溫NMR來進行實驗,透過尋找崩潰溫度,再將所得之參數代入艾林方程式 (Erying equation) 中,便可探討不同取代基對於苯環旋轉能障以及消旋能障的影響;(2) 我們也透過分析分子間不同旋轉異構物 (rotamers) 的比例來探討π-π作用力影響之下的結果;(3) 分析晶體結構有助於我們了解分子的基態構型。
本研究中的合成策略相對簡單、官能基耐受性高且產率大多為中上。在研究方面則可提供多元的探討,這不禁令人期待後續的研究潛力。
The focus of this study is to synthesize 13,14-disubstituted dibenzo[b,j][4,7]phenanthroline by utilizing the Friedländer condensation reaction between 1,4-cyclohexanedione and ortho-aminoketone. This one-step synthesis provides a platform to investigate the steric hindrance of two substituents in a crowded environment. When both substituents are phenyl ring, the parallel offset arrangement can be utilized to explore how π-π interaction can affect intramolecular dynamic and conformer distributions.
In this study, three approaches were employed: (1) Variable Temperature NMR experiments were conducted to determine the coalescence temperature temperature of the synthesized compound. These temperatures were then put in Erying equation to assess the activation energy of aryl rotation and racemization barrier. Moreover, substituent effect on these motions can also be evaluated. (2) The proportions of different rotamers were analyzed to investigate the influence of π-π interaction. (3) Analysis of crystal structures helps us realize the ground state conformation of the molecules.
The synthetic strategy in this study was relatively straightforward and adaptable, with mostly moderate to high yields. The research direction highlights the versatility of this platform for diverse investigations. Its potential for future applications were highly anticipated.
(1) Klosterman, J. K.; Yamauchi, Y.; Fujita, M. Engineering discrete stacks of aromatic molecules. Chem. Soc. Rev., 2009, 38 (6), 1714-1725.
(2) Krenske, E. H.; Houk, K. N. Aromatic Interactions as Control Elements in Stereoselective Organic Reactions. Acc. Chem. Res., 2013, 46 (4), 979-989.
(3) Chen, Z.; Lohr, A.; Saha-Möller, C. R.; Würthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev., 2009, 38 (2), 564-584.
(4) Kool, E. T.; Morales, J. C.; Guckian, K. M. Mimicking the Structure and Function of DNA: Insights into DNA Stability and Replication. Angew. Chem., Int. Ed. Engl., 2000, 39 (6), 990-1009.
(5) Burley, S. K.; Petsko, G. A. Weakly Polar Interactions In Proteins. In Advances in Protein Chemistry, Anfinsen, C. B., Edsall, J. T., Richards, F. M., Eisenberg, D. S. Eds.; Vol. 39; Academic Press, 1988; pp 125-189.
(6) Hwang, J. w.; Li, P.; Shimizu, K. D. Synergy between experimental and computational studies of aromatic stacking interactions. Org. Biomol. Chem., 2017, 15 (7), 1554-1564.
(7) Martinez, C. R.; Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci., 2012, 3 (7), 2191-2201.
(8) Gung, B. W.; Xue, X.; Reich, H. J. The Strength of Parallel-Displaced Arene−Arene Interactions in Chloroform. J. Org. Chem., 2005, 70 (9), 3641-3644.
(9) Mathew, S. M.; Engle, J. T.; Ziegler, C. J.; Hartley, C. S. The Role of Arene–Arene Interactions in the Folding of ortho-Phenylenes. J. Am. Chem. Soc., 2013, 135 (17), 6714-6722.
(10) Cram, D. J.; Steinberg, H. Macro rings. I. Preparation and spectra of the paracyclophanes. J. Am. Chem. Soc., 1951, 73 (12), 5691-5704.
(11) Hunter, C. A.; Sanders, J. K. M. The nature of .pi.-.pi. interactions. J. Am. Chem. Soc., 1990, 112 (14), 5525-5534.
(12) House, H. O.; Magin, R. W.; Thompson, H. W. The Synthesis of 1,8-Diphenylnaphthalene. J. Org. Chem., 1963, 28 (9), 2403-2406.
(13) House, H. O.; Campbell, W. J.; Gall, M. Rotational barrier in 1, 8-diarylnaphthalenes. J. Org. Chem., 1970, 35 (6), 1815-1819.
(14) Qiu, W.; Chen, S.; Sun, X.; Liu, Y.; Zhu, D. Suzuki Coupling Reaction of 1,6,7,12-Tetrabromoperylene Bisimide. Org. Lett., 2006, 8 (5), 867-870.
(15) Osswald, P.; Würthner, F. Effects of Bay Substituents on the Racemization Barriers of Perylene Bisimides: Resolution of Atropo-Enantiomers. J. Am. Chem. Soc., 2007, 129 (46), 14319-14326.
(16) Renner, R.; Mahlmeister, B.; Anhalt, O.; Stolte, M.; Würthner, F. Chiral Perylene Bisimide Dyes by Interlocked Arene Substituents in the Bay Area. Chem. Eur. J., 2021, 27 (46), 11997-12006.
(17) Yang, W.; Longhi, G.; Abbate, S.; Lucotti, A.; Tommasini, M.; Villani, C.; Catalano, V. J.; Lykhin, A. O.; Varganov, S. A.; Chalifoux, W. A. Chiral Peropyrene: Synthesis, Structure, and Properties. J. Am. Chem. Soc., 2017, 139 (37), 13102-13109.
(18) Li, Y.; Yagi, A.; Itami, K. Synthesis of sterically hindered 4,5-diarylphenanthrenes via acid-catalyzed bisannulation of benzenediacetaldehydes with alkynes. Chem. Sci., 2019, 10 (21), 5470-5475.
(19) Li, Y.; Yagi, A.; Itami, K. Synthesis of Highly Twisted, Nonplanar Aromatic Macrocycles Enabled by an Axially Chiral 4,5-Diphenylphenanthrene Building Block. J. Am. Chem. Soc., 2020, 142 (6), 3246-3253.
(20) Muchowski, J. M.; Venuti, M. C. Ortho functionalization of N-(tert-butoxycarbonyl) aniline. J. Org. Chem., 1980, 45 (23), 4798-4801.
(21) Moody, C. L.; Pugh, D. S.; Taylor, R. J. K. A one-pot oxidation/allylation/oxidation sequence for the preparation of β,γ-unsaturated ketones directly from primary alcohols. Tetrahedron Lett., 2011, 52 (19), 2511-2514.
(22) Kloetzing, R. J.; Krasovskiy, A.; Knochel, P. The Mg-Oppenauer Oxidation as a Mild Method for the Synthesis of Aryl and Metallocenyl Ketones. Chem. Eur. J., 2007, 13 (1), 215-227.
(23) Young, C. M.; Elmi, A.; Pascoe, D. J.; Morris, R. K.; McLaughlin, C.; Woods, A. M.; Frost, A. B.; de la Houpliere, A.; Ling, K. B.; Smith, T. K.; et al. The Importance of 1,5-Oxygen⋅⋅⋅Chalcogen Interactions in Enantioselective Isochalcogenourea Catalysis. Angew. Chem. Int. Ed. Engl., 2020, 59 (9), 3705-3710.
(24) Salvio, R.; Placidi, S.; Sinibaldi, A.; Di Sabato, A.; Buscemi, D. C.; Rossi, A.; Antenucci, A.; Malkov, A.; Bella, M. Organocatalytic Synthesis of Benzazetidines by Trapping Hemiaminals with Protecting Groups. J. Org. Chem., 2019, 84 (11), 7395-7404.
(25) Cheng, C.-C.; Yan, S.-J. The Friedländer Synthesis of Quinolines. In Organic Reactions, pp 37-201.
(26) Herrera, A.; Martínez-Alvarez, R.; Chioua, M.; Chatt, R.; Chioua, R.; Sánchez, A.; Almy, J. The reaction of tetralones with nitriles: a simple approach to the synthesis of new substituted benzo[h]quinazolines, benzo[f]quinazolines and dibenzo[a,i]phenanthridines. Tetrahedron 2006, 62 (12), 2799-2811.
(27) Knickmeier, M.; Erker, G.; Fox, T. Conformational Analysis of Nonbridged Bent Metallocene Ziegler-Catalyst PrecursorsDetection of the Third Torsional Isomer. J. Am. Chem. Soc.,1996, 118 (40), 9623-9630.
(28) Hack, D.; Loh, C. C. J.; Hartmann, J. M.; Raabe, G.; Enders, D. Merging Gold and Organocatalysis: A Facile Asymmetric Synthesis of Annulated Pyrroles. Chem. Eur. J., 2014, 20 (14), 3917-3921.
(29) Matsumoto, K.; Toubaru, Y.; Tachikawa, S.; Miki, A.; Sakai, K.; Koroki, S.; Hirokane, T.; Shindo, M.; Yoshida, M. Catalytic and Aerobic Oxidative Biaryl Coupling of Anilines Using a Recyclable Heterogeneous Catalyst for Synthesis of Benzidines and Bicarbazoles. J. Org. Chem., 2020, 85 (23), 15154-15166.
(30) Cozzi, F.; Annunziata, R.; Benaglia, M.; Cinquini, M.; Raimondi, L.; Baldridge, K. K.; Siegel, J. S. Through-space interactions between face-to-face, center-to-edge oriented arenes: importance of polar–π effects. Org. Biomol. Chem., 2003, 1 (1), 157-162, 10.1039/B208871A.
(31) Winstein, S.; Holness, N. J. Neighboring Carbon and Hydrogen. XIX. t-Butylcyclohexyl Derivatives. Quantitative Conformational Analysis. J. Am. Chem. Soc., 1955, 77 (21), 5562-5578.
(32) Bott, G.; Field, L. D.; Sternhell, S. Steric effects. A study of a rationally designed system. J. Am. Chem. Soc., 1980, 102 (17), 5618-5626.
(33) Cozzi, F.; Cinquini, M.; Annunziata, R.; Dwyer, T.; Siegel, J. S. Polar/.pi. interactions between stacked aryls in 1,8-diarylnaphthalenes. J. Am. Chem. Soc., 1992, 114 (14), 5729-5733.
(34) Stover, J. S.; Shi, J.; Jin, W.; Vogt, P. K.; Boger, D. L. Discovery of Inhibitors of Aberrant Gene Transcription from Libraries of DNA Binding Molecules: Inhibition of LEF-1-Mediated Gene Transcription and Oncogenic Transformation. J. Am. Chem. Soc., 2009, 131 (9), 3342-3348.