跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃俊威
Chun-Wei Huang
論文名稱: 進化演算法結合多層感知機架構運用在4-QAM決策迴授等化器上
4-QAM Decision feedback equalization using Evoluation based multi-layer perceptron structures.
指導教授: 賀嘉律
Chia-Lu Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 90
中文關鍵詞: 進化演算法
外文關鍵詞: Evolutionary Algorithms
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通訊系統在傳送過程中,信號會受到頻寬的限制與雜訊的干擾,而產生失真現象。為了減少信號在有限頻寬通道中,受到雜訊與碼際干擾(Intersymbol Interference,ISI)效應的影響,本論文提出一種適用於進化演算法的應用,將進化演算法結合多層感知機架構,運用在4-QAM(Quadrature amplitude modulated)決策迴授等化器(DFE)上來消除雜訊與碼際干擾。
    由於多層感知機(Multi-layer perceptron,MLP)其架構具有非線性之特性,可以設計成為良好的通道等化器。但是多層感知機的誤差曲面包含了釵h零梯度點,所以使用複數倒傳遞演算法(Complex backpropagation algorithm,CBP)來訓練多層感知機,常會面臨到陷入局部最小值(Local minimum),而導致無法將多層感知機訓練到最佳。
    進化演算法(Evolutionary algorithms,EAs)為一種非梯度坡降學習演算法(non-gradient decent learning algorithm),其根據達爾文『適者生存』的法則,來獲得最佳化的解。我們利用進化演算法具有非梯度坡降搜尋與多點搜尋的技巧,來避免因為初始值位址不佳而無法獲得全域最小值(Global minimum)。
    結果顯示,利用進化演算法運算所得到的誤碼率(bit error rate, BER)表現,比用複數倒傳遞演算法還要好,亦比使用傳統最小均方誤差(Least mean-square)決策迴授等化器有更好的效能。


    圖目錄、表目錄﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ Ⅶ 第一章 緒論(Introduction) 1-1 數位通信系統簡介﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒1 1-2 研究進化演算法的動機﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒3 第二章 等化器(Equalizer) 2-1 通道等化﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 5 2-2 符元干擾﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 7 2-3 線性等化器宇決策回授等化器﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 9 2-4 Wiener Filter﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 15 2-5 最小均方誤差演算法﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 20 2-6複數最小均方誤差演算法的Canonical模式﹒﹒﹒﹒﹒ 24 第三章 複數型倒傳遞演算法結合多層感知機運用在決策迴授等 化器(MLP-based DFE using complex B.P) 3-1 類神經網路概念﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 27 3-2 類神經網路架構﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 30 3-3 類神經網路的運作模式﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 32 3-4 多層感知機﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 35 3-5 將多層感知機架構在決策回授等化器﹒﹒﹒﹒﹒﹒﹒40 3-7 複數型倒傳遞演算法﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 43 第四章 進化演算法(Evolutionary Algorithms) 4-1 隨機搜尋法﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 49 4-2 進化演算法概念﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 51 4-3 初始化﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 53 4-4 評估﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 56 4-5 重組﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 58 4-6 突變﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 60 4-7 選擇﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 61 4-8 風險分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 63 第五章 模擬結果(Simulation Results) 5-1 系統模擬結構﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 65 5-2 收斂特性分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 67 5-3 位元錯誤率分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 75 5-4 觀察母代 不同的影響﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 81 第六章 結論(Conclusion)﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 85 參考文獻﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒87

    [1] F.Glover, “Tabu Search – Part I”, ORSA Journal of Computing, vol.1, no.3, pp.190-206, Summer 1989.
    [2] F.Glover, “Tabu Search – Part II”, ORSA Journal of Computing, vol.2, no.1, pp.4-32, Winter 1990.
    [3] Xiaofeng Qi and Francesco Palmieri, “Theoretical Analysis of Evolutionary Algorithms With an infinite Population size in Continuous Space PartⅠ:Basic Properties of Selection and Mutation”, IEEE Transactions On Neural Networks, Vol. 5, No. 1, January 1994.
    [4] Xiaofeng Qi and Francesco Palmieri, “Theoretical Analysis of Evolutionary Algorithms With an infinite Population size in Continuous Space PartⅡ:Analysis of the Diversification Role of Crossover”, IEEE Transactions On Neural Networks, Vol. 5, No. 1, January 1994.
    [5] P. Power, F. Sweeney, C. F. N. Cowan, “EA Crossover Schemes For a MLP Channel Equalizer”, Electronics, Circuits and Systems, 1999. Proceedings of ICECS ''99. The 6th IEEE International Conference on Volume: 1 , 1999 , pp. 407 -410.
    [6] S.U. H. Qureshi, “Adaptive equalization”, Proc. IEEE, 1985, 73, (9), pp.1349-1387.
    [7] G.j. Gibson, S. Siu, C.F.N. Cowan, “Multi-layer perceptron structures applied to adaptive equalizers for data communications”, IEEE Proceedings ICASSP Glasgow, Scotland, May 1989, pp. 1183-1186.
    [8] S. Siu, G.j. Gibson, and C.F.N. Cowan, “Decision feedback equalisation using neural network structures and performance comparison with standard architecture”, IEEE Proceedings, Vol.137, PartⅠ, NO.4, pp. 221-225, August, 1990.
    [9] S. Siu, Non-linear adaptive equalization based on a multi-layer perceptron architecture, Thesis for doctorate, University of Edinburgh, U.K. 1990.
    [10] G.j. Gibson, S. Siu, and C.F.N. Cowan, “The application of nonlinear structures to the reconstruction of binary signal”, IEEE Transactions on Signal Processing, Vol. 39, No. 8, pp.1877-1884, Aug., 1991.
    [11] M. Minsky, and S. Papert , Perceptron : An introduction to computational geometry”, MIT Press, 1988.
    [12] David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, Inc.
    [13] E. A. Lee, D. G. Messerchmitt, Digital communication, Kluwer Academic Publishers, 1988.
    [14] Bernard Sklar, DIGITAL COMMUNICATIONS Fundamental and Applications, Prentice-Hall, Inc. 1988
    [15] Simon Haykin, Adaptive Filter Theory, Prentice-Hall, Inc. 1996
    [16] J. G. Proakis, Digital Communication, New York: McGraw Hill, 1989, 2nd ed.
    [17] 蘇木春,張孝德, 機器學習 類神經網路、模糊系統以及基因演算法則, 全華科技圖書股份有限公司.
    [18] 林繼洲, 函數連結與模糊適應等化器效能評估,元智大學電機工程研究所碩士論文, 1999.
    [19] 廖鴻翰, 以基因演算法建構類神經網路模型, 大葉大學電機工程研究所碩士論文, 2000.
    [20] D.H Bandwood, “A Complex gradient operator and its application in adaptive array theory”, IEEE Proceedings, Vol.130, pp, February, 1983.
    [21] 葉怡成, 類神經網路模式應用與實作, 儒林圖書有限公司,1993.
    [22] Yoh-Han Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Publishing Company, Inc. 1989.
    [23] 張吉良, 利用進化演算法在多層感知結構之判別回授等化器, 國立中央大學電機工程研究所碩士論文, 2001.
    [24] Ching-Haur Chang and Sammy Siu, Che-Ho Wei, “Complex Backpropagation Decision Feedback Equalizer With Decision Using Neural Nets”, journal of the Chinese institute of electrical engineering, vol.7, no.1 pp63-69(2000).
    [25] N. Benvenuto, and F. Piazza, “On the complex backpropagation algorithm”, IEEE Trans. Signal Processing, vol.40, no.4, pp.967-969, 1992.
    [26] H. Leung and S. Haykin, “The complex backpropagation algorithm”, IEEE Trans. Signal Processing, vol.39, no.9, pp.2101-2104, 1991.
    [27] I. Cha and S.A.Kassam “Channel equalization using adaptive complex radial basis function networks”, IEEE Journal on Selected Areas in Communications, vol.13,no. 1,pp. 122-131, 1995.
    [28] T. Back, Evoluationary algorithm in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford, 1996.
    [29] L.J. Fogel, A.J. Owens and M.J. Walsh, Artificial Intelligence through Simulated Evolution, New York, 1966.
    [30] I. Rechenberg, Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien der biologischen Evolution, Stuttgart: Frommann-Holzbboog, 1973.
    [31] J.H. Holland, Adaptation in Natural and Artificial System, The University of Michigan Press, 1975.
    [32] 莊文仲, 多層感知機等化器-使用進化演算法, 國立中央大學電機工程研究所碩士論文, 2001.
    [33] 陳德, 模糊類神經網路結合進化演算法運用在基頻通道等化器上, 國立中央大學電機工程研究所碩士論文, 2001.
    [34] 張清濠, 使用健全學習法則的多項式神經網路等化器, 國立交通大學電子研究所博士論文, Chapter 1, 1995.
    [35] C.F.Wu, QAM/VSB Dual Mode Equalizer Design and Implementation, 國立中央大學電機工程研究所碩士論文, 1998.
    [36] S. C. Huang, and Y. F. Huang, “Bounds on the number of hidden neurons in multilayer perceptrons”, IEEE Transactions on Neural Networks, vol.10, no.3, pp.59-68, 1992.
    [37] Jyh-Shing Roger Jang, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine intelligence, Prentice-Hall, Inc. 1997.

    QR CODE
    :::