| 研究生: |
王騏宥 Chi-Yu Wang |
|---|---|
| 論文名稱: |
波長調制共焦干涉術應用於厚度與折射率之量測 Wavelength-modulated confocal interferometry for thickness and refractive index measurements |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 共焦顯微術 、波長調制干涉術 、波長調制共焦干涉術 、厚度與折射率量測 |
| 外文關鍵詞: | confocal microscope, wavelength modulation interferometry, wavelength modulated confocal interferometry, thickness and refractive index measurement |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文開發一套,可同時量測物體厚度及折射率之量測系統,應用於檢測窗鏡片加工製程、生物醫學檢測及透鏡的厚度與折射率量測等。本論文系統架構為波長調制共焦干涉儀(WMCI),本系統相較於傳統的共焦顯微鏡系統或是干涉儀系統,之間的差異為傳統的共焦顯微鏡系統及干涉儀,皆需已知物體厚度或折射率其中一個參數,才能量測出另一個參數,而波長調制共焦干涉儀可藉由本系統的核心數學模型,同時求出厚度與折射率。
本系統基於共焦顯微鏡及波長調制干涉術之原理,建立一套全新的數學模型,藉由共焦及干涉所量測到的兩個厚度參數,可以解出物體的真實厚度及折射率。以市售雷射窗鏡為待測樣品,作為本系統的量測能力測試,分別量測兩種不同厚度以及三種不同折射率的物體,並與游標卡尺及廠商表訂規格做比較。實驗結果顯示,厚度量測範圍能達到毫米等級,厚度量測解析度為5 μm;折射率量測解析度為0.0045。本系統搭配電控位移平台,以自行開發的系統控制與訊號處理程式,可達到自動化量測,對於精密機械加工、產品製程及生物醫學上有極大的潛力。
This study develops a measuring system that can measure the thickness and refractive index of an object simultaneously. It can be applied to inspect the manufacturing process of window lens, biomedical detection, lens thickness and refractive index measurement. The system’s architecture is a wavelength-modulated confocal interference system. The difference is that the conventional confocal microscope system and the interferometer system need to first know either the thickness or refraction of the object in order to obtain the other parameter. And the wavelength-modulated confocal interference system can measure two parameters at the same time by the core mathematical model of this system.
Based on the principle of confocal microscope and wavelength modulation interferometry, this system establishes a new mathematical model. The two thickness parameters measured by confocal and interference can solve the true thickness and refractive index of the object. The commercially available laser window mirror is used as the test object to examine the measurement capability of the system, two different thickness and three different refractive index objects are measured separately. And compared with the digital caliper and the manufacturer's specification, the experimental results show that the thickness measurement range can reach millimeter level. And the thickness measurement’s resolution is 5 μm. The refractive index measurement’s resolution is 0.0045. This system is equipped with an electronically controlled displacement platform. With self-developed control program and signal processing, the system can achieve automated measurement. The system has great potential for precision measurement, product process and biomedicine.
[1] Z. Tian, S. S-H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33, 1105-1107 (2008).
[2] R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors and Actuators B: Chemical, 209-217 (1993).
[3] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science, 254(5035), 1178-1181 (1991).
[4] 李浩瑋,「結合數位微鏡晶片之全域式彩色共焦顯微量測系統研發」,國立臺北科技大學,碩士論文,民國100年。
[5] A. Miks, J. Novak, and P. Novak, “Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor,” Appl. Optics, 49(17), 3259-3264 (2010).
[6] T. Boettcher, M. Gronle, and W. Osten, “Multi-layer topography measurement using a new hybrid single-shot technique: Chromatic Confocal Coherence Tomography (CCCT),” Opt. Express 25, 10204-10213 (2017).
[7] X. Wang, C. Zhang, L. Zhang, L. Xue, and J. G. Tian, “Simultaneous refractive index and thickness measurements of bio-tissue by optical coherence tomography,” J. Biomed. Opt. 7(4) (2002).
[8] T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Optics, 41(22), 4704-4708 (2002).
[9] A. R. Rouse, H. Makhlouf, A. A. Tanbakuchi, and A. F. Gmitro, “A multipoint scanner for high frame rate confocal microendoscopy,” Proc. SPIE, 7558, 755809-1 (2010).
[10] A. Miks, J. Novak, and P. Novak, “Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor,” Appl. Optics, 49(17), 3259-3264 (2010).
[11] H. J. Choi, H. H. Lim, H. S. Moon, T. B. Eom, J. J. Ju, and M. Cha, “Measurement of refractive index and thickness of transparent plate by dual-wavelength interference,” Opt. Express 18, 9429-9434 (2010).
[12] M. H. Chiu, J. Y. Lee, and D. C. Su, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry,” Appl. Opt. 36, 2936-2939 (1997).
[13] M. Born, and E. Wolf, “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Edition),” Cambridge University Press. (1999).
[14] T. Boettcher, M. Gronle, and W. Osten, “Multi-layer topography measurement using a new hybrid single-shot technique: Chromatic Confocal Coherence Tomography (CCCT),” Opt. Express 25, 10204-10213 (2017).
[15] C. S. Liu, T. Y. Wang, and Y. T. Chen, “Novel system for simultaneously measuring the thickness and refractive index of a transparent plate with two optical paths,” Applied Physics B. 124. 10.1007/s00340-018-7052-4 (2018).
[16] 趙凱華、鐘錫華,光學,儒林圖書 (1992)。
[17] M. Born, and E. Wolf, “Principles of Optics,” Ch. 7, 8 (2011).
[18] 朱士維,「光學顯微技術的新進展」,台大物理系系刊,76-81 (2008)。
[19] T. Wilson1, and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett., 12(4), 227-229 (1987).
[20] Rayleigh criterion,
取自 http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Raylei.html。
[21] 傳統光學顯微鏡與共焦顯微鏡所觀察的影像圖,
取自 http://abrc.sinica.edu.tw/icm/app_out/main/theorem.php。
[22] Z Stack,
取自 https://cam.facilities.northwestern.edu/588-2/z-stack/。
[23] 陳柏菁,「共焦顯微術系統之設計與裝置」,國立台灣大學,碩士論文,民國91年。
[24] Scanning and resolution,
取自 https://myscope.training/legacy/confocal/confocal/image/resolution.php。
[25] C. C. Wu, C. C. Hsu, J. Y. Lee, H. Y. Chen, and C. L. Dai, “Optical heterodyne laser encoder with sub-nanometer resolution,” Meas. Sci. Technol, 19, 045305 (2008).
[26] 丁勝懋,雷射工程導論,中央圖書出版社,台北市,台灣 (1995)。
[27] 雷射二極體規格圖,
取自 https://www.thorlabs.com/thorproduct.cfm?partnumber=HL6544FM。
[28] R. Onodera, and Y. Ishii, “Phase-shift-locked interferometer with a avelength-modulated laser diode,” Appl. Opt., 24, No.1, 91-96 (2003).
[29] M. H. Chiu, J. Y. Lee, and D. C. Su, “Refractive index measurement based on the effects of the total internal refraction and the uses of the heterodyne interferometry,” Appl. Opt., 36, 2936-2939 (1997).
[30] D. C. Su, J. Y. Lee, and M. H. Chiu, “New type of liquid refractometer,” Opt. Eng., 37, 2795-2797 (1998).
[31] J. Y. Lee, and D. C. Su, “A method for measuring Brewster’s angle by circularly polarized heterodyne interferometry,” J. Opt., 29, 349-353 (1998).
[32] 待測樣品元件規格表,
取自 https://www.edmundoptics.com.sg/。
[33] 方承彥等人,量測不確定度與統計概念研討會,財團法人工業技術研究院量測技術發展中心 (報告編號:0790-CB036),未出版 (2001)。