跳到主要內容

簡易檢索 / 詳目顯示

研究生: 生頼 直樹
Naoki ORAI
論文名稱: A Study on Seismic Resistance Evaluation Methods for Embankments with Consideration of Rainfall Effect
指導教授: 陳慧慈
Huei-Tsyr Chen
一井康二
Koji ICHII
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 116
中文關鍵詞: 降雨土堤耐震Newmark 法有限元素法
外文關鍵詞: Rainfall, embankment, seismic resistance, Newmark method, finite element method
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據最近的研究降雨會影響土堤的耐震能力,但是至今仍沒有一個
    有效的考慮降雨影響的耐震評估方法。此外,剪力模數受到降雨的
    影響為何也仍不清楚。為了避免降雨與地震對土堤造成的災害,前
    述的兩個問題必須加以處理的。
    本研究透過與動態有限元素法的分析結果的比對,檢視了一個基於
    能以簡單的模式和少數的參數進行土堤穩定分析的 Newmark 方法而
    發展出來的可以考慮降雨影響的方法。另一方面,也利用動態有限
    元素法探討了剪力模數的改變對土堤耐震能力的影響。降雨的影響
    係以吸力(suction)的改變來表示,而剪力模數因為降雨的改變則是
    使用了可以考慮吸力影響的剪力模數模式。
    與動態有限元素法的分析結果比較後發現,使用 Newmark 法考慮降
    雨的影響,當輸入的地震之最大加速度較小時,會低估土堤的殘餘
    位移;但當輸入的地震之最大加速度超過某個數值時,則會高估土
    堤之殘餘位移。根據此一結果,本研究針對 Newmark 法提出了一個
    修正係數與最大加速度的雙線性關係式。此外,本研究也發現剪力
    模數的改變對於土堤的受震殘餘位移的影響很小,因此在土堤的耐
    震評估中可以忽略其變化的影響。


    According to the recent studies, it was shown that the rainfall would reduce the seismic
    resistance of embankment. However, there is no general seismic resistance evaluation method
    which can consider the effect of rainfall yet. In addition, the effect of shear modulus variation
    due to rainfall is not clarified yet. In order to prevent the complex disaster of rainfall and
    earthquake, these two problems should be addressed.
    In this study, a method to consider the effect of rainfall based on Newmark method
    was examined, which can conduct the analysis with simple model and a few parameters. The
    applicability of the method was also examined comparing with the result of dynamic FEM
    analyses. In addition, the effect of the change of shear modulus on the seismic resistance of
    embankment was also examined by using dynamic FEM analyses. The effect of rainfall was
    considered as a change of suction. The change of suction was taken into account in the shear
    modulus model.
    By comparing with the results of FEM analyses, it was found that for Newmark
    method with the consideration of rainfall, the residual displacement is underestimated the
    when the maximum input acceleration is small and overestimated when the maximum input
    acceleration exceeds certain value. Thus, the correction coefficients for the results of
    Newmark method are proposed based on the comparison of analysis results from Newmark
    method and FEM method and the relationship between maximum input acceleration and
    correction coefficient is bilinear. It is also found that the effect of shear modulus variation on
    seismic displacement is small enough to be neglected for the seismic residual displacement
    evaluation.

    摘要 …………………………………………………………… i Abstract ……………………………………………………………… ii Acknowledgement …………………………………………………………… iii Contents …………………………………………………………… v List of Figures …………………………………………………………… viii List of Tables …………………………………………………………… x Format of Notation Illustration ……………………………………………………………… xi 1. Introduction………………………………………………… 1 1-1 Background………………………………………………… 1 1-2 Aim of this study…………………………………………… 1 2. Previous studies…………………………………………….. 2 2-1 Outline……………………………………………………… 2 2-2 Current situation regarding seismic resistance evaluation…. 2 2-3 Review of seismic resistance evaluation methods…………. 3 2-3-1 Seismic resistance evaluation based on Newmark method… 3 2-3-1-1 Examination on the applicability of Newmark method……. 4 2-3-1-2 Comparison of Newmark method with FE method………... 5 2-3-1-3 Summary of this section……………………………………. 5 2-3-2 Seismic resistance evaluation based on finite element method……………………………………………………… 6 2-3-2-1 Examination on the applicability of FLIP for high embankment………………………………………………... 6 2-3-2-2 Examination on the applicability of FLIP by centrifuge tests 6 2-3-2-3 Summary of this section……………………………………. 7 2-4 The effect of rainfall on the seismic resistance of embankments………………………………………………. 7 2-4-1 Effect of rainfall on critical acceleration…………………… 7 2-4-2 Effect of rainfall on residual displacement………………… 8 2-4-3 Effect of rainfall on shear wave velocity…………………... 8 2-5 Previous study to consider the change of soil parameter due to rainfall…………………………………………………… 9 2-6 Summary…………………………………………………… 10 3. Examination of seismic resistance evaluation method with the consideration of rainfall………………………………… 12 3-1 Outline……………………………………………………… 12 3-2 Preliminary analysis………………………………………... 12 3-3 A method to consider the effect of rainfall in Newmark method……………………………………………………… 13 3-3-1 The calculation of weight…………………………………... 13 3-3-2 The calculation of cohesion………………………………… 143-4 Simulation analysis of model experiment………………….. 14 3-4-1 Analysis model…………………………………………….. 14 3-4-2 Soil parameters……………………………………………... 14 3-4-3 Input motions……………………………………………….. 15 3-5 Result of analysis…………………………………………... 15 3-5-1 Result of slope stability analysis…………………………… 15 3-5-2 Result of seismic response analysis………………………... 15 3-6 The applicability of Newmark method…………………….. 15 3-7 Discussion………………………………………………….. 16 3-8 Summary…………………………………………………… 17 4. The comparison of Newmark method to FE method……. 18 4-1 Outline……………………………………………………… 18 4-2 Analysis cases……………………………………………… 18 4-3 Target embankment………………………………………… 19 4-4 Analysis conditions………………………………………… 19 4-4-1 Analysis conditions for FE method………………………… 19 4-4-1-1 Analysis model……………………………………………... 19 4-4-1-2 Boundary conditions……………………………………….. 19 4-4-1-3 Input parameters……………………………………………. 20 4-4-1-4 Input motions………………………………………………. 20 4-4-2 Analysis conditions for Newmark method…………………. 20 4-4-2-1 Analysis model……………………………………………... 20 4-4-2-2 Input parameters……………………………………………. 21 4-4-2-3 The location of slip surface………………………………… 21 4-4-2-4 Input motions……………………………………………….. 21 4-5 The results of analysis……………………………………… 22 4-5-1 The relationship between the ratio of displacement and maximum input acceleration……………………………….. 23 4-5-2 The relationship between ratio of displacement and degree of saturation………………………………………………… 23 4-5-3 The relationship between ratio of displacement and height of embankment……………………………………………... 23 4-6 The calculation of the correction coefficient……………….. 23 4-6-1 The concept of correction coefficient………………………. 23 4-6-2 The calculation procedure of correction coefficient……….. 24 4-6-3 The result of calculation on correction coefficient…………. 24 4-6-4 Multi linear regression analysis on Ay and α………………. 25 4-6-4-1 General……………………………………………………... 26 4-6-4-2 The results of analysis……………………………………… 26 4-7 Summary…………………………………………………… 26 5. The examination of the effect of shear modulus variation due to rainfall on the displacement of embankments………. 27 5-1 Outline……………………………………………………… 27 5-2 Shear modulus model with the effect of rainfall…………… 27 5-2-1 General description for shear modulus model……………… 27 5-2-2 Effect of rainfall on shear modulus………………………... 28 5-3 Single element analysis…………………………………… 29 5-3-1 Mesh and boundary conditions……………………... 29 5-3-2 Soil parameters……………………………………………... 29 5-3-3 Water retention curve………………………………………. 30 5-3-4 The results of analysis……………………………………… 30 5-4 Seismic analysis on embankment………………………….. 31 5-4-1 Mesh……...………………………………………………… 31 5-4-2 Boundary conditions……………………………………….. 31 5-4-3 Input motions……………………………………………….. 31 5-4-4 The results of analysis……………………………………… 31 5-4-4-1 The results of hysteresis loop………………………………. 31 5-4-4-2 The result of residual displacement………………………… 32 5-4-4-3 The result of response acceleration………………………… 32 5-5 Summary…………………………………………………… 33 6. Conclusions………………………………………………… 34 References ……………………………………………………………… 35

    Athapaththu, A.M.R.G., Tsuchida, T., Suga, K and Kano, S. 2007. A lightweight dynamic cone
    penetrometer for evaluation of shear strength of natural masado slopes, Dobokugakkai ronbunshuu C,
    Vol. 63, No.2, 403-416.
    Fukumasa, S., Murakami, H., Nishihara, R., Kimura, H and Razabi, S. 2001. The experiment and analysis
    regarding to the seismic resistance improving construction method of natural slope (No. 2), 36th

    geotechnical engineering, Tokushima, Japan, (in Japanese).
    Newmark, N.M. 1965. Effects of earthquakes on dams and embankments, Geotechnique, Vol. 15, No. 2,
    139-160.
    Murata, A., Miyajima, M., Matsumoto, T. and Karasawa, T. 2010. The experimental study on the damage
    factor for the Noto high way in Noto peninsula earthquake 2007, Proceeding of 3rd
    symposium of the
    record and problem in the big earthquake which happened recently, 25-28, (in Japanese).
    Hata, Y., Ichii, K., Tsuchida, T., Liming, L, Kano, S. and Yamashita, N. 2008. The selection of the input
    earthquake motion and the numerical calculation method in the evaluation of the seismic deformation
    of the slopes, Journal of the Japan Landslide Society, Vol. 45, No. 1, 64-71.
    Hata, Y., Ichii. K., Tsuchida, T and Kano, S. 2009. A study on seismic resistance reduction of embankment
    due to rainfall, Dobokugakkai ronbunshuu C, Vol. 65, No.2, 401-411, (in Japanese).
    Hata, Y., Ichii, K., Murata, A., Nozu, A., Miyajima, M. and Tokida, K. 2011. An evaluation of the shear
    wave velocity profile in a road embankment using the microtremor measurement, Journal of the Japan
    Landslide Society, Vol. 48, No. 6, 318-325.
    Horii, K., Tateyama, M., Kojima, K., Watanabe, K., Shinoda, M., and Ishiduka, M. 2006.Evaluation of
    restoration performance using the residual deformation for the railway embankment seriously damaged
    in the 2004 Niigata-ken chuetsu earthquake, The journal of geosynthetics , Japan branch of
    international society of geosynthetics, Vol. 21.
    Iai, S., Matsunaga, Y. and Kameoka, T. 1990.Strain space plasticity model for cyclic mobility, Report of
    Port and Harbour Research Institute, Vol. 29, No. 4,27-56.
    Ichii, K. 2005. Experimental study on seismic resistance reduction of embankment due to rainfall,
    Earthquake Engineering Committee, JSCE, JSCE Earthquake Engineering, Vol. 28. , (in Japanese).
    JSCE Earthquake engineering comitte. 2001. Earthquake resistant design guideline for civil engineering
    structure, Japan Society of Civil Engineering, 142-144, (in Japanese).
    Kato, Y., Ogata, K., Li, S., Tanaka, H., Shimomura, Y., and Sakuma, K. 2003. A Study on Permanent
    Displacement of Expressway Embankment under Large-scale Earthquake (Part 1), 38th
    annual meetingon geotechnical engineering, 1309-1310.
    Kato, Y., Kitamura, Y., Hamazaki, T., Sakuma, K., Li, S., and Sugiyama, H. 2003. A Study on Permanent
    Displacement of Expressway Embankment under Large-scale Earthquake (Part 2), 38th
    annual meeting
    on geotechnical engineering, 1307-1308.
    Kawano, M., Konishi, M. and Ichii, K. 2013. Study on the relationship between Shear wave velocity and
    Suction in the Ground in Drying process, 68th
    annual meeting on Japan society of civil engineering
    Ling, H.I. and Leshchinsky, D. 1995. Seimic performance of simple slopes , Soils and Foundation, Vol. 35,
    No. 2, 85-94.
    Murakami, Y. 2013. A study on the evaluation of road embankments considering the various condition,
    Master thesis for Hiroshima university.
    Marcuson, W. F. and Wahls, H. E. 1972. Time effects on dynamic shear modulus of clays, Journal of the
    soil mechanism and foundation division, ASCE, Vol.98, No.SM12, 1359-1373.
    Research committee of disaster prevention on residual area. 2007. Commentary of manual on the disaster
    prevention of residual area, Gyosei, (in Japanese).
    Railway technical Research Institute. 2007. Design Standards for Railway Structures and Commentary
    (Earth Structures), Maruzen, (in Japanese).
    Ugai, K., Ida, H., and Wakai, A. 1995. Analysis on sliding of slopes during Earthquake by the Dynamic
    Elasto-Plastic FEM, Journal of Japan Landslide Society, Vol. 31, No. 1, 8-11.

    QR CODE
    :::