跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳泰安
Tai-An Chen
論文名稱: 球形顆粒系統之碰撞分析及演算法
Contact Analysis and Simulation algorithm for Ball Assessment
指導教授: 王仲宇
Chung Yue Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 119
中文關鍵詞: 顆粒離散元素接觸阻尼接觸搜尋正向力時間增量
外文關鍵詞: Particle, discrete element, contact
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 此外,離散元素法在模擬一些離散介質體系,往往需要以一些相異顆粒來組成分析模型,而過去在此類分析過程中,顆粒間碰撞彈簧、阻尼和時間增量數值的選取方式並無定則,特別是對於不同大小、材料性質相異之顆粒碰撞問題時,經常以經驗值來計算,造成相當大之分析誤差。本論文亦將針對此問題,提出一個具體可行的方式,可有效地模擬三維彈性圓球顆粒正向碰撞行為,並進而推導出顆粒介質體之速度合成分析法及一套運算系統,可應用到多球顆粒系統之分析。本論文所提各項方法之精確度及可行性,可透過一系列例題之演算得到驗證。



    When applied in simulating the behavior of granular assemblies, Discrete Element Method (DEM) usually need different particles to assemble analysis model. However, the determination of the values of the stiffness of normal contact spring, damping coefficient, and time steps size are still based on experience rule since the past decades. Certain amount of error would be accumulated and then leads to an inaccurate behavior prediction. In this thesis, a nonlinear normal impact analysis method is presented to simulate the dynamic behaviors of particles with different sizes and material properties. Besides, the so called “velocity summation method” is developed further to simulate the behavior of multi-particles. The accuracy and efficiency of all the proposed methods are demonstrated and verified through some benchmark problems.

    目 錄 摘要……………………………………………………….….I 英文摘要…………………………………………………………………….II 目錄…………………………………………………………………………..III 表目錄…………………………………………….………………………….VI 圖目錄……………………………………………….………………………VII 符號說明…………………………………………..………………………..X 第一章 緒論…………………………………...1 1.1 研究背景……………………………………………………...1 1.2 研究動機與目的……………………………………………...3 1.3 論文架構………………………………………………………5 第二章 文獻回顧………………………………..7 2.1 計算力學發展沿革……………………………………………7 2.2三維離散系統之演算法………………………………………11 2.3三維顆粒碰撞接觸力傳遞系統………………………………12 第三章 快速搜尋演算法……………………….14 3.1快速接觸搜尋演算法分析步驟………………………………14 3.2範例討論………………………………………………………20 3.3空間分割處理程序……………………………………………22 3.4小結……………………………………………………………23 3.5撰寫程式之建議………………………………………………24 第四章 碰撞理論推導………………………….25 4.1採用線性彈簧及阻尼之顆粒碰撞正向力計算………………25 4.1.1 顆粒線性接觸理論…………………………………….25 4.1.2線性接觸理論之阻尼選取……………………………..30 4.1.3 線性接觸理論時間增量選取………………………….31 4.1.4 線性分析碰撞總接觸時間與最大入侵量…………….34 4.2採用非線性彈簧及阻尼之顆粒碰撞正向力計算……………36 4.2.1 Hertz非線性接觸理論…………………………………36 4.2.2 顆粒碰撞運動方程推導……………………………….38 第五章 碰撞理論驗證及討論………………….46 5.1 無阻尼碰撞總接觸時間與最大壓縮量……………………...46 5.1.1 理論推導……………………………………………….46 5.1.2 非線性分析時間增量討論…………………………….49 5.1.3 非線性分析碰撞總接觸時間及最大壓縮量………….51 5.2顆粒碰撞前後速度關係………………………………………52 5.3數值模擬範例及討論…………………………………………55 5.4 小結…………………………………………………………..58 第六章 速度合成法……………………………59 6.1 前言…………………………………………………………..59 6.2 速度合成法(Velocity Summation Method)之理論推導…….59 6.3 線性分析方法與程序………………………………………..62 6.4 非線性分析方法與程序……………………………………..67 第七章 運動顆粒分析程式流程與驗證………72 7.1 程式流程……………………………………………………..72 7.2 實例驗證……………………………………………………..73 7.2 小結…………………………………………………………..75 第八章 結論與建議……………………………77 8.1結論…………………………………………………………...77 8.2 建議…………………………………………………………..79 參考文獻……………………………………………………..81 附表……………………………………… ………….91 附圖………………………………………….……….96 表 目 錄 表 (5.3.1) 相同圓球無阻尼碰撞試驗之材料性質91 表 (5.3.2) 不同時間步程分析與解析解相較分離速度之誤差91 表 (5.3.3) 不同時間步程分析與解析解相較總接觸時間誤差92 表 (5.3.4) 不同時間步程分析與解析解相較分離速度之誤差92 表 (5.3.5) 顆粒材料性質92 表 (5.3.6) 不同時間步程分析與解析解相較分離速度之誤差93 表 (5.3.7) 不同時間步程分析與解析解相較總接觸時間誤差93 表 (5.3.8) 不同時間步程分析與解析解相較分離速度之誤差93 表 (7.2.1) 擬靜態試驗之材料性質94 表 (7.2.2) 雙球正向碰撞試驗之材料性質94 表 (7.2.3) 三球碰撞試驗之材料性質94 表 (7.2.4) 斜向碰撞試驗之材料性質95 表 (7.2.5) 大小球正向碰撞試驗之材料性質95 表 (7.2.6) 長串球波傳試驗之材料性質95 圖 目 錄 圖3.1 顆粒分析系統程式流程圖96 圖3.2 顆粒重心散佈空間方格分割圖97 圖3.3 顆粒重心散佈空間方格編號97 圖3.4 平面顆粒與邊界所處位置和可能產生接觸顆粒所處區域關係98 圖3.5 顆粒重心散佈所處方格與可能接觸方格空間關係98 圖3.6 顆粒間可能發生之三種狀況99 圖3.7 比較不同方法分析堆積問題顆粒數與耗費運算時間關係99 圖3.8 快速搜尋法分析堆積問題圓球顆粒數與運算時間關係100 圖3.9 13000顆圓球顆粒堆積圖100 圖3.10 快速搜尋法分析堆積問題橢球顆粒數與運算時間關係[101]101 圖3.11 5000顆橢球顆粒堆積圖[101]101 圖3.12 1000顆球相同參數條件不同時間步程堆積耗費時間比較102 圖3.13 1000顆球不同半徑組合相同參數堆積耗費時間比較圖102 圖3.14 空間分割大區域編號103 圖3.15 空間分割大區域及帶區編號103 圖3.16 空間分割小區域編號104 圖3.17 十萬顆球堆積圖[101]104 圖4.1 線性分析兩相異顆粒碰撞接觸模型105 圖4.2 不同阻尼線性分析兩顆粒碰撞轉換位移與轉換時間關係105 圖4.3 不同阻尼線性分析兩顆粒碰撞轉換速度與轉換時間關係106 圖4.4 不同阻尼線性分析兩顆粒碰撞轉換加速度與轉換時間關係106 圖4.5 線性分析顆粒碰撞在不同狀況轉換總接觸時間與阻尼關係107 圖4.6 線性分析顆粒碰撞在不同狀況恢復係數與阻尼關係107 圖4.7 非線性分析兩相異顆粒碰撞接觸模型108 圖4.8 不同阻尼非線性分析兩顆粒碰撞轉換位移與轉換時間關係108 圖4.9 不同阻尼非線性分析兩顆粒碰撞轉換速度與轉換時間關係109 圖4.10 不同阻尼非線性分析顆粒碰撞轉換加速度與轉換時間關係109 圖4.11 非線性分析顆粒碰撞在不同狀況轉換總接觸時間與阻尼關係110 圖4.12 非線性分析顆粒碰撞在不同狀況下恢復係數與阻尼關係110 圖5.1 非線性分析在不同狀況轉換總接觸時間與恢復係數關係111 圖5.2 無阻尼兩顆粒碰撞速度誤差與轉換時間步程關係111 圖5.3 不同時間步程分析無阻尼兩相同顆粒碰撞期間速度歷時曲線112 圖5.4 時間增量與步程數及碰撞分離速度和總接觸時間誤差之關係112 圖5.5 不同時間增量分析阻尼 顆粒碰撞速度歷時曲線113 圖5.6 不同時間步程分析無阻尼兩相異顆粒碰撞速度歷時曲線113 圖5.7 不同時間步程分析阻尼 相異顆粒碰撞歷時曲線114 圖7.1 運動顆粒分析程式流程圖115 圖7.2 單顆粒擬靜態實驗116 圖7.3 兩顆粒撞擊實驗116 圖7.4 三顆粒撞擊實驗117 圖7.5 三顆粒斜向撞擊實驗X方向速度變化117 圖7.6 三顆粒斜向撞擊實驗Y方向速度變化118 圖7.7 兩顆粒正向撞擊實驗速度變化118 圖7.8 五顆粒撞擊實驗119

    [1].Agrawala S., R. K. Rajamani, P. Songfack, and B. K. Mishra, “Mechanics of Media Motion in Tumbling Mills With 3D Discrete Element Method,” Minerals Engineering, Vol. 10, No. 2, pp. 215-227 (1997).
    [2].Attaway, S. W., B. A. Hendrickson, S. J. Plimpton, D. R. Gardner, C. T. Vaughan, K. H. Brown, and M. W. Heinstein, “A Parallel Contact Detection Algorithm for Transient Solid Dynamics Simulations Using PRONTO3D,” Computational Mechanics, vol. 22, pp.143-159 (1998).
    [3].Asakura, K., S. Harada, T. Funayama, and I. Nakajima, “Simulation of Descending Particles in Water By the Distinct Element Method,” Powder Technology, Vol. 94, pp.195-200 (1997).
    [4].Boresi, A. P., R. J. Schmidt, and O.M., Sidebottom, “Advanced Mechanics of Materials,” John Wiley & Sons, Inc., Fifth Edition, pp. 692-731 (1993).
    [5].Briscoe, Brian J., “Interaction Laws and the Rheology of Assemblies,” Powder Technology, Vol. 88, pp.255-259 (1996).
    [6].Cambou, B., Marie Chaze, and Philippe Dubujet, “Discrete Models For Contact Problems,” Contact Mechanics, pp.373-380 (1995).
    [7].Chang Shuenn-Yih, Keh-Chyuan Tsai, and Kuan-Chou Chen, “Improved Time Integration For Pseudodynamic Tests,” Earthquake Engineering And Structural Dynamics, Vol. 27, pp.711-730 (1998).
    [8].Chang Shuenn-Yih, “Improved Numerical Dissipation For Explicit Methods in Pseudodynamic Tests,” Earthquake Engineering And Structural Dynamics, Vol. 26, pp.917-929 (1997).
    [9].Cheng, Y. M., “Advancements and Improvement in Discontinuous Deformation Analysis,” Computers and Geotechnics, Vol. 22, No. 2, pp. 153-163 (1998).
    [10].Cleary, P. W., “Predicting Charge Motion, Power Draw, Segregation and Wear in Ball Mills Using Discrete Element Methods,” Minerals Engineering, Vol. 11, No. 11, pp.1061-1080 (1998).
    [11].Clement, E., L. Vanel, J. Rajchenbach, and J. Duran, “Pattern Formation in a Vibrated Granular Layer,” Physical Review E, Vol. 53, No. 3, pp.2972-2975 (1996).
    [12].Cundall, P. A., “Formulation of Three-dimensional Distinct Element Model─PartⅠ. A Scheme to Detect and Represent Contacts in a System Composed of Many Polyhedral Blocks,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 25, No. 3, pp. 107-116 (1988).
    [13].Cundall, P.A., “Formulation of a Three-dimensional Distinct Element Model─Part Ⅱ. Mechanical Calculations for Motion and Interaction of a System Composed of Many Polyhedral Blocks,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 25, No. 3, pp. 117-125 (1988).
    [14].Cundall, P. A., and O. D. L. Strack, “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, Vol. 29, No. 1, pp. 47-65 (1979).
    [15].Dokainish, M. A., and K. Subbaraj, “A Survey of Direct Time-Integration Methods in Computational Structural Dynamics-I. Explicit Methods,” Computers & Structures, Vol. 32, No. 6, pp. 1371-1386 (1989).
    [16].Favier, J. F., M. H. Abbaspour-Fard, M. Kremmer, and A.O. Raji, “Shape Representation of Axi-Symmetrical, Non-Spherical Particles in Discrete Element Simulation Using Multi-Element Model Particles,” Engineering Computations, Vol. 16, No. 4, pp.467-480 (1999).
    [17].Gera, D., M. Gautam, Y. Tsuji, T. Kawaguchi, T. Tanaka, “Computer Simulation of Bubbles in Large-particle Fluidized Beds,” Powder Technology, Vol. 98, pp. 38-47 (1998).
    [18].Ghaboussi, J., and R. Barbosa, “Three-dimensional Discrete Element Method for Granular Materials,” International Journal for Numerical methods in Geomechanics, Vol. 14, pp. 451-472 (1990).
    [19].Goyal, S., E. N. Pinson, and F. W. Sinden, “Simulation of Dynamics of Interacting Rigid Bodies Including Friction II: Software System Design and Implementation,” Engineering with Computers, Vol. 10, pp. 175-195 (1994).
    [20].Gundepudi, M. K., B. V. Sankar, J. J. Mecholsky, Jr., and D. C. Clupper, “Stress analysis of Brittle Spheres Under Multiaxial Loading,” Powder Technology, Vol. 94, pp.153-161 (1997).
    [21].Hakuno, M., and K. Meguro, “Simulations of the Collapse of Concrete Frames and Volcanic Eruption,” Adrances in Micromechanics of Granular Materials, H. H. Shen et al. (Editors), pp. 321-330 (1992).
    [22].Heinrich, M. J., and R. N. Sidney, “Vibration in Assemblies of Grains, from Sand to Glass Beads, Generate Organized Phenomena, Including Complex Patterns of Flow,” American Scientist, Vol. 85, pp. 540-545 (1997).
    [23].Helbing, D., and Schreckenberg, M., “Celluar Automata Simulating Experimental Properties of Traffic Flow,” Cond-Mat, V2, pp. 1-4 (1999).
    [24].Heinnch, M. J., and Nagel, S. R., “Granular Solids, Liquids,and Gases,” Reviews of Modern Physics, Vol. 68, No. 4, pp. 1259-1273 (1996).
    [25].Hogekamp, S., H. Schubert, and S. Wolf, “Steam Jet Agglomeration of Water Soluble Material,” Powder Technology, Vol. 86, pp.49-57 (1996).
    [26].Hogue, Caroline, and David Newland, “Efficient Computer Simulation of Moving Granular Particles,” Powder Technology, Vol. 78, pp.51-66 (1994).
    [27].Hu, Ning, “A Solution Method for Dynamic Contact Problems,” Computers and Structures, Vol. 63, No. 6, pp. 595-602 (1997).
    [28].Hubbard, P. M., “Approximating Polyhedra with Spheres for Time-Critical Collision Detection,” A. C. M. Transactions on Graphics, Vol. 15, No. 3, pp. 179-210 (1996).
    [29].Hwang Kuo-Jen, Yeong-Shing Wu, and Wei-Ming Lu, “The surface structure of Cake Formed By Uniform-Sized Rigid Spheroids in Cake Filtration,” Powder Technology, Vol. 87, pp.161-168 (1996).
    [30].Iwashita, K., and M. Oda, “Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM,” Journal of Engineering Mechanics, pp.285-292 (1998).
    [31].Jaeger, H. M., James B. K., Chu-heng Liu, and Sidney R.N., “What is Shaking in the Sandbox,” Science, Volume 255, pp.1523-1531 (1992).
    [32].Jaeger, H. M., and Sidney R. N., “Physics of the Granular State,” Science, Volume 255, pp.1523-1531 (1992).
    [33].Jaeger, H. M., and Sidney R. N., “Dynamics of Granular Material,” American Scientist, Volume 85, pp.540-545 (1997).
    [34].Jensen, Richard P., Peter J. Bosscher, Michael E. Plesha, and Tuncer B. Edil, “ DEM Simulation of Granular Media- Structure Interface: Effects of Surface Roughness And Particle Shape,” International Journal for Numerical and Analytical Methods in Geomechanics,” Vol. 23, pp. 531-547 (1999).
    [35].Kawaguchi, T., T. Tanaka, and Y. Tsuji, “Numerical Simulation of Two-dimensional Fluidized Beds Using the Discrete Element Method ( Comparison Between the Two-and Three-dimensional models ),” Powder Technology, Vol. 96, pp. 129-138 (1998).
    [36].Kim, D. J., Guibas, L. J., and Shin, S. Y., “Fast Collision Detection Among Multiple Moving Spheres,” IEEE Transactions on Visualization and Computer Graphics, Vol. 4, No. 3 (1998).
    [37].Kim, J. S., J. Y. Kim, and S. R. Lee, “Analysis of Soil Nailed Earth Slope by Discrete Element Method,” Computers and Geotechnics, Vol. 20, No. 1, pp.1-14 (1997).
    [38].Kristensen, Henning G., “Particle Agglomeration in High Shear Mixers,” Powder Technology, Vol. 88, pp.197-202 (1996).
    [39].Kun, F., and Hans J. H., “A Study of Fragmentation Processes Using a Discrete Element Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 138, pp.3-18 (1996).
    [40].Kuo, J. T., Smid, J., Hsiau, S. S., and Chou, C. S., “Granular Bed Filter Technology (Review Paper),” Proc. Natl. Sci. Counc. R.O.C. (A), Vol. 22, No. 1, pp. 17-34 (1998).
    [41].Langston P. A., M. S. Nikitidis, U. TuZun, D. M. Heyes, and N. M. Spyrou, “Microstructural Simulation and Imaging of Granular Flows in Two- and Three-Dimensional Hoppers,” Powder Technology, Vol. 94, pp.59-72 (1997).
    [42].Lian, G., M. J. Adams, and C. Thornton, “Elastohydrodynamic Collisions of Solid Spheres,” J. Fluid Mech., Vol. 311, pp.141-152 (1996).
    [43].Lin, J. S., and S. Chen, “Discrete Element Modeling of Direct Shear and Simple Shear Tests,” Proceedings of 2nd Int. Conference on DEM, IESL Publications, pp. 245-252 (1993).
    [44].Linz, S. J., “phenomenological Modeling of the Compaction Dynamics of Shaken Granular Systems,” Physical Review E, Vol. 54, No.3, pp.2925-2930 (1996).
    [45].Liu, Jianxin, and Randall M. German, “Distance or Spacing Parameters in Agglomerated Monosized Spherical Particulate Systems,” Part. Part. Syst. Charact. , Vol. 16, pp.35-38 (1999).
    [46].Matuttis, H. G., S. Luding and H. J. Herrmann, “Discrete Element Simulation of Dense Packings and Heaps Made of Spherical and Non-spherical Particles,” Powder Technology, Vol. 109, pp. 278-292 (2000).
    [47].Mindlin, R. D., “Compliance of Elastic Bodies in Contact,” Journal of Applied Mechanics, pp.259-268 (1949).
    [48].Mirghasemi, A. A., L. Rothenburg, and E. L. Matyas, “Numerical Simulations of Assemblies of Two-Dimensional Polygon-Shaped Particles and Effects of Confining Pressure on Shear Strength,” Soils and Foundations, Vol. 37, No. 3, pp.43-52 (1997).
    [49].Moore, M., and Wilhelms, J., “ Collision Detection and Response for Computer Animation,” Computer Graphics, Vol. 22, pp. 289-298 (1988).
    [50].Moreau, J. J., “Numerical Experiments in Granular Dynamics: Vibration- Induced Size Segregation,” Contact Mechanics, pp.347-358 (1995).
    [51].Muguruma, Yoshitsugu, Toshitsugu Tanaka, Satoru Kawatake, and Yutaka Tsuji, “Discrete Particle Simulation of a Rotary Vessel Mixer with Baffles,” Powder Technology, Vol. 93, pp. 261-266 (1997).
    [52].Nesbit, P. Q., and M. H. Moys, “Load Behaviour in The Hicom Nutating Mill,” Minerals Engineering, Vol.11, No. 10, pp.979-988 (1998).
    [53].Nowak, E. R., J. B. Knight, E. B. Naim, H. M. Jaeger, and S. R. Nagel, “Density Fluctuations in Vibrated Granular Materials,” Physical Review E, Vol. 57, No.2, pp.1971-1982 (1998).
    [54].Oldenburg, M. and L. Nilsson, “The Position Code Algorithm for Contact Searching,” Int. J. Numer. Meth. Engng., Vol. 37, pp. 359-368 (1994).
    [55].Potapov, Alexander V., and Charles S. Campbell, “Computer Simulation of Shear-Induced Particle Attrition,” Powder Technology, Vol. 94, pp.109-122 (1997).
    [56].Sadd, Martin H., Gautam Adhikari, and Francisco Cardoso, “DEM Simulation of Wave Propagation in Granular Materials,” Powder Technology, Vol. 109, pp.222-233 (2000).
    [57].Shi, G. H.,“Discontinuous Deformation Analysis, A new Numerical Model for the Static and Dynamics of Block systems,”Ph. D. Thesis, Department of Civil Engineering, University of California at Berkeley (1988).
    [58].Shi, G. H., “Modeling Dynamic Rock Failure by Discontinuous Deformation Analysis with Simplex Integrations,” Geotechnical Lab., U.S. Army Engineer Waterways Experiment Station, Viskburg, MS 39180-6199 (1995).
    [59].Subbaraj, K., and M. A. Dokainish, “A Survey of Direct Time-Integration Methods in Computational Structural Dynamics-II. Implicit Methods,” Computers & Structures, Vol. 32, No. 6, pp. 1387-1401 (1989).
    [60].Thomas P. A., and J. D. Bray, “Capturing Nonspherical Shape of Granular Media with Disk Clusters,” Journal of Geotechnical and Geoenvironmental Engineering, pp.169-178 (1999).
    [61].Trent, B. C., and L. G. Margolin, “Numerical Validation of A Constitutive Theory for An Arbitrarily Fractured Solid,” Engineering Computations, Vol. 12, pp.125-134 (1995).
    [62].Timoshenko, S., “Strength of Materials,” D. Van Nostrand Company, Inc., Third Edition, pp. 339-343 (1976).
    [63].Ting, J. M., B. T. Corkum, C.R. Kauffman, and C. Greco, “Discrete Numerical Model for Soil Mechanics,” Journal of Geotechnical Engineering, Vol. 115, No. 3, pp. 379-398 (1989).
    [64].Tsuji, Y., T. Tanaka, and T. Ishida, “Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe,” Powder Technology, Vol. 71, pp. 239-250 (1992).
    [65].Tsuji, Y., T. Kawaguchi and T. Tanaka, “Discrete Particle Simulation of Two-dimensional Fluidized Bed,” Powder Technology, Vol. 77, pp. 79-87 (1993).
    [66].Vemuri, B. C., “Efficient and Accurate Collision Detection for Granular Flow Simulation,” Graphical Models and Image Processing, Vol. 60, pp.403-422 (1998).
    [67].Vu-Quoc, L., X. Zhang, and O. R. Walton, “A 3-D Discrete-element Method for Dry Granular Flows of Ellipsoidal Particles,” Comput. Methods Appl. Mech. Engrg. , Vol. 187, pp. 483-528 (2000).
    [68].Wang, C. Y. and C. F., Wang and Jopan, Sheng, “A Packing Generation Scheme for the Granular Assemblies with 3D Ellipsoidal Particle,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 23, pp. 815-828 (1999).
    [69].Wang, C. Y. and V. C., Liang, “A Packing Generation Scheme for the Granular Assemblies with Planar Elliptical Particle,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 21, pp. 347-358 (1997).
    [70].Wang, S. P. and E. Nakamachi, “The Inside-Outside Contact Search Algorithm,” Int. J. Numer. Meth. Engng., Vol. 40, pp. 3665-685(1997).
    [71].Watanabe, Hiroshi, “Critical Rotation Speed for Ball-Milling,” Powder Technology, Vol. 104, pp.95-99 (1999).
    [72].Winkler, T., K. Meguro, and F. Yamazaki, “Response of Rigid Body Assemblies to Dynamic Excitation,” Earthquake Engineering and Structural Dynamic, Vol. 24, pp. 1389-1408 (1995).
    [73].Zhang, D. and W. J. Whiten, “The Calculation of Contact Forces Between Particles Using Spring and Damping Models,” Powder Technology, Vol. 88, pp. 59-64 (1996).
    [74].Zhang, D. and W. J. Whiten, “An Efficient Calculation Method for Particle Motion in Discrete Element Simulations,” Powder Technology, Vol. 98, pp. 223-230 (1998).
    [75].Zhang, D. and W. J. Whiten, “Contact Modelling for Discrete Element Modelling of Ball Mills,” Minerals Engineering, Vol. 11, No. 8, pp. 689-698 (1998).
    [76].Zhang, D. and W. J. Whiten, “A New Calculation Method for Particle Motion in Tangential Direction in Discrete Element Simulations,” Powder Technology, Vol. 102, pp. 235-243 (1999).
    [77].Zhang, C., O. A. Pekau, F. Jin, and G. Wang, “Application of Distinct Element Method in Dynamic Analysis of High Rock Slopes and Blocky Structures,” Soil Dynamics and Earthquake Engineering, Vol. 16, pp. 385-394 (1997).
    [78].Zhao, H., “The Virtual Contact Loading Method for Contact Problems Considering Material and Geometric Nonlinearities,” Computers and Structures, Vol. 58, No. 3, pp. 621-632 (1996).
    [79].Zhong, Z. H. and L. Nilsson, “A Contact Searching Algorithm for General Contact Problems,” Computers and Structures, Vol. 33, No.1, pp. 197-209 (1989).
    [80].Zhong, Z. H. and L. Nilsson, “A Contact Searching Algorithm for General 3-D Contact-Impact Problems,” Computers and Structures, Vol. 34, No. 2, pp.327-335 (1990).
    [81].王仲宇、李承恩、盛若磐,「三維球型顆粒堆積體之運動行為分析」,力學期刊,第十四卷,第二期,第500-510頁(1998)。
    [82].王仲宇、盛若磐、陳泰安,「運動顆粒接觸判斷快速搜尋法」,八十八年電子計算機於土木水利工程應用研討會論文集,第503-512頁(2000)。
    [83].王明洋、錢七虎,「顆粒介質的彈塑性動態本構關係研究」,固體力學學報(中國大陸),第十六卷,第二期,第175-180頁(1995)。
    [84].何君毅、林祥都,「工程結構非線性問題的數值解法」,國防工業出版社(中國大陸) ,北京(1994)。
    [85].李宇欣、陳立文,「對鄰近搜尋法的新測試方法」,中國土木水利工程學刊,第十卷,第四期,第661-668頁(1998)。
    [86].李承恩,「三維球形顆粒介質體變形分析」,碩士論文,國立中央大學土木工程研究所,中壢(1997)。
    [87].周憲德、張藝耀,「三維顆粒堆積體受水平振動之傾角變化」,力學期刊,第十六卷,第二期,pp.153-160 (2000)。
    [88].陳俊全,「混合型橢球顆粒介質體運動之數值模擬」,碩士論文,國立中央大學土木工程研究所,中壢(1999)。
    [89].陳堯中,「以TRUBAL探討顆粒材料之力學行為」,顆粒材料力學研習會論文集,台北,第59-90頁(1991)。
    [90].張大鵬、黃立遠、張炳坤,「組構張量特性與等向性及正交性材料彈性值張量之研究」,力學期刊,第十二卷,第二期,第279-289頁(1996)。
    [91].張大鵬、黃兆龍、林仁益、王景信,「顆粒材料巨微觀模式探討複合材料行為之初步研究」,顆粒材料力學研習會論文集,台北,第1-2頁(1991)。
    [92].張順益,「適用於擬動態試驗之具數值消散特性的外顯示積分法」,中國土木水利工程學刊,第十卷,第三期,第495-503頁(1998)。
    [93].張義隆、褚炳麟、林宏冠、郭殷孝,「複合圓形顆粒模式之建立及應用」,岩盤工程研討會論文集,第367-378頁(2000)。
    [94].許秀真,「剛性多面體系統之數值模擬」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
    [95].楊長義、陳建仲,「卵礫石層因開挖引致之拱效應」,,中國土木水利工程學刊,第九卷,第三期,第369-378頁(1997)。
    [96].廖慶隆,「顆粒材料分析模式及其應用簡介」,顆粒材料力學研習會論文集,台北,第33-57頁(1991)。
    [97].廖慶隆、陳永毅,「計算力學之工程應用」,近代工程計算論壇(2000),中壢,第1.1-1.16頁(2000)。
    [98].詹前登、陳晉琪,「球體沿粗糙斜面運動之流體阻力與邊界阻力」,力學,第十二卷,第四期,pp.495-501 (1996)。
    [99].劉建宏,「橢球顆粒介質體運動之數值模擬」,碩士論文,國立中央大學土木工程研究所,中壢(1998)。
    [100].Johnson, K.L.著,徐秉業、羅學富、劉信聲、宋國華、孫學偉譯,接觸力學,中國大陸高等教育出版社,北京(1985)。
    [101].白文正,「三維離散元素數值模擬與改良」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。

    QR CODE
    :::