跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林怡秀
Yi-Hsiu Lin
論文名稱: Estimating shadow prices of PM2.5 and NOx for transportation modes in Taiwan: Stochastic semi-nonparametric envelopment of data (StoNED) approach
指導教授: 陳惠國
Huey-Kuo Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 68
中文關鍵詞: 移動源汙染隨機半無母數資料包絡法(StoNED)非期望產出影子價格效率前緣
外文關鍵詞: mobile source pollutant emission, tochastic semi-nonparametric envelopment of data (StoNED), undesirable outputs, shadow price, frontier model
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著環保意識的提升,人們越來越重視空氣汙染的議題。空氣汙染不僅對環境造成許多負面的影響,也對人體造成很大的威脅。但過去文獻大多探討固定源的汙染排放,鮮少以移動源汙染為研究對象。因此,本研究透過凸性無母數最小平方法(CNLS)及隨機半無母數資料包絡法(StoNED),估算2013年台灣本島7個空品區的11種公路運具其汙染物PM2.5和NOx排放的影子價格,並針對3種私人運具(四行程機車、二行程機車、自用汽油小客車)進行探討。結果顯示,四行程機車及二行程機車對於兩種汙染物的影子價格大多相同;自用汽油小客車對於兩種汙染物的影子價格皆較高,政府應著重新的自用汽油小客車技術發展以達到減排效果。未來制定相關移動源汙染排放政策時,可以制定不同的補助方案,優先針對特定區域給予補助或依不同區域給予相對的補助金額來降低不同運具的汙染排放。


    With the growing environmental awareness, people become more concerned about the relevant issues of air pollution. Air pollution does not only cause adverse environmental effects, but also cause serious health conditions. However, the majority of research is focused on stationary sources. Not much research has been done on the air pollutant emissions of mobile sources. Thus, this paper applies convex nonparametric least squares (CNLS) and stochastic semi-nonparametric envelopment of data (StoNED) model to study the shadow prices of PM2.5 and NOx for 11 transportation modes in 7 air quality areas of Taiwan in 2013 with aim to find a reference for policy makers to improve our air quality via reducing pollutant emissions of mobile sources. The result show that most range of estimated shadow prices of PM2.5 and NOx with respect to four-stroke scooter and two-stroke scooter are the same. The range of estimated shadow prices of the two pollutants with respect to private gasoline sedan are high meaning that government should pay more attention to develop new technology for private gasoline sedan to reduce pollutant emissions. When dealing with mobile sources pollutant emissions, policy maker can give different subsidies to different areas to develop new technology such as promote electric vehicle to phase out old sedans for improving level of air quality.

    中文摘要 i Abstract ii 誌謝 iii List of Figures vi List of Tables vii 1 Introduction 1 2 Literature review 4 2.1 Performance measures 4 2.2 Estimation of shadow prices for undesirable output 7 3 Methodology 9 3.1 Production possibility set of weak disposability assumption 9 3.1.1 Production possibility set of weak disposability 10 3.1.2 Weak disposability of DEA estimator 11 3.2 Production frontier model 11 3.2.1 Random error term 12 3.2.2 Deterministic error term 13 3.2.3 Composite error term 14 3.2.3.1 Method of moments 15 3.2.3.2 Estimating the inefficiency of specific DMU 16 3.3 Estimating shadow prices of undesirable outputs 16 4 Empirical result 20 4.1 Data collection 20 4.2 Results analysis 22 5 Discussion and conclusion 27 References 32 Appendix A: The road transportation data 37 Appendix B: The price of desirable output 40 Appendix C: Shadow prices of PM2.5 and for transportation modes in three different frontier models 43

    [1] Afriat, S. N. (1972). Efficiency estimation of production functions. International economic review, 568-598.
    [2] Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of econometrics, 6, 21-37.
    [3] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2, 429-444.
    [4] Coggins, J. S., & Swinton, J. R. (1996). The price of pollution: a dual approach to valuing SO2 allowances. Journal of environmental economics and management, 30(1), 58-72.
    [5] Coelli, T., Lauwers, L., & Van Huylenbroeck, G. (2007). Environmental efficiency measurement and the materials balance condition. Journal of productivity analysis, 28(1-2), 3-12.
    [6] Cropper, M. L., & Oates, W. E. (1992). Environmental economics: a survey. Journal of economic literature, 30(2), 675-740.
    [7] Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2016). Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric framework. European Journal of Operational Research, 250(2), 347-359.
    [8] Drucker, Peter F., (1973). Management: Tasks, Responsibilities, and Practices. New York: Harper & Row.
    [9] Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society Series A, 120, 253-281.
    [10] Färe, R., Grosskopf, S., & Pasurka, C. (1986). Effects on relative efficiency in electric power generation due to environmental controls. Resources and energy, 8(2), 167-184.
    [11] Färe, R., Grosskopf, S., Lovell, C. K., & Yaisawarng, S. (1993). Derivation of shadow prices for undesirable outputs: a distance function approach. The review of economics and statistics, 374-380.
    [12] Färe, R., & Grosskopf, S. (2003). Nonparametric productivity analysis with undesirable outputs: comment. American Journal of Agricultural Economics, 85(4), 1070-1074.
    [13] Färe, R., & Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: comment. European Journal of Operational Research, 157(1), 242-245.
    [14] Färe, R., Grosskopf, S., Noh, D. W., & Weber, W. (2005). Characteristics of a polluting technology: theory and practice. Journal of Econometrics, 126(2), 469-492.
    [15] Färe, R., & Grosskopf, S. (2009). A comment on weak disposability in nonparametric production analysis. American Journal of Agricultural Economics, 91(2), 535-538.
    [16] González, M. M., & Trujillo, L. (2009). Efficiency measurement in the port industry: A survey of the empirical evidence. Journal of Transport Economics and Policy (JTEP), 43(2), 157-192.
    [17] Hailu, A., & Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: an application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83(3), 605-616.
    [18] Hampf, B., & Rødseth, K. L. (2015). Carbon dioxide emission standards for US power plants: An efficiency analysis perspective. Energy Economics, 50, 140-153.
    [19] Johnson, A. L., & Kuosmanen, T. (2015). An introduction to CNLS and StoNED methods for efficiency analysis: Economic insights and computational aspects. In Benchmarking for Performance Evaluation (pp. 117-186). Springer, New Delhi.
    [20] Jondrow, J., Lovell, C. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of econometrics, 19(2-3), 233-238.
    [21] Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric environment, 120, 475-483.
    [22] Kuosmanen, T. (2005). Weak disposability in nonparametric production analysis with undesirable outputs. American Journal of Agricultural Economics, 87(4), 1077-1082.
    [23] Kuosmanen, Timo. (June 2006). Stochastic Nonparametric Envelopment of Data: Combining Virtues of Sfa and DEA in a Unified Framework. MTT Discussion Paper No. 3/2006. Available at SSRN: https://ssrn.com/abstract=905758 or http://dx.doi.org/10.2139/ssrn.905758
    [24] Kuosmanen, T. (2008). Representation theorem for convex nonparametric least squares. The Econometrics Journal, 11(2), 308-325.
    [25] Kuosmanen, T., & Kuosmanen, N. (2009). Role of benchmark technology in sustainable value analysis An application to Finnish dairy farms. Agricultural and Food Science, 18(3-4), 302-316.
    [26] Kuosmanen, T., & Podinovski, V. (2009). Weak disposability in nonparametric production analysis: reply to Färe and Grosskopf. American Journal of Agricultural Economics, 91(2), 539-545.
    [27] Kuosmanen, T., & Johnson, A. L. (2010). Data envelopment analysis as nonparametric least-squares regression. Operations Research, 58(1), 149-160.
    [28] Kuosmanen, T. (2011). Cost efficiency analysis of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model. School of Economics, Aalto University, Finland.
    [29] Kuosmanen, T., & Kortelainen, M. (2012). Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints. Journal of productivity analysis, 38(1), 11-28.
    [30] Kuosmanen, T., Johnson, A., & Saastamoinen, A. (2015). Stochastic nonparametric approach to efficiency analysis: A unified framework. In Data envelopment analysis (pp. 191-244). Springer, Boston, MA.
    [31] Lee, C. Y., & Zhou, P. (2015). Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990–2010. Energy Economics, 51, 493-502.
    [32] Lovell, C. K., Pastor, J. T., & Turner, J. A. (1995). Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries. European journal of operational research, 87(3), 507-518.
    [33] Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International economic review, 18, 435-444.
    [34] Mekaroonreung, M., & Johnson, A. L. (2012). Estimating the shadow prices of SO2 and NOx for US coal power plants: a convex nonparametric least squares approach. Energy Economics, 34(3), 723-732.
    [35] Morales Sarriera, J., Serebrisky, T., Briceño-Garmendia, C., & Schwartz, J. (2013). Benchmarking Container Port Technical Efficiency in Latin America and the Caribbean (No. IDB-WP-474). IDB Working Paper Series.
    [36] Murty, S., Russell, R. R., & Levkoff, S. B. (2012). On modeling pollution-generating technologies. Journal of environmental economics and management, 64(1), 117-135.
    [37] Sahoo, B. K., Luptacik, M., & Mahlberg, B. (2011). Alternative measures of environmental technology structure in DEA: An application. European Journal of Operational Research, 215(3), 750-762.
    [38] Shepherd, R. W. (1970). Theory of cost and production functions. Princeton University Press.
    [39] Yang, H., & Pollitt, M. (2009). Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants. European journal of operational research, 197(3), 1095-1105.
    [40] Zhou, P., Zhou, X., & Fan, L. W. (2014). On estimating shadow prices of undesirable outputs with efficiency models: A literature review. Applied Energy, 130, 799-806.
    [41] Green zones.eu. The central portal for all European environmental zones. Retrieved July 7, 2019, from https://www.green-zones.eu/en.html.
    [42] WHO. Ambient air pollution: Health impacts. Retrieved June 1, 2019, from https://www.who.int/airpollution/ambient/health-impacts/en/.
    [43] WHO. Ambient air pollution: Pollutants. Retrieved August 1, 2019, from https://www.who.int/airpollution/ambient/pollutants/en/.
    [44] Transport for London. Low Emission Zone. Retrieved July 7, 2019, from https://tfl.gov.uk/modes/driving/low-emission-zone.
    [45] 行政院,空氣污染防制大作戰—修正法條+行動方案,擷取日期:2019.07.07,https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/23c411a0-1b20-42e7-9843-daf6cdedc61b。
    [46] 全國法規資料庫,空氣汙染防制法,擷取日期:2019.07.07,https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=O0020001。
    [47] 經濟部能源局,油價資訊管理及分析系統,擷取日期:2019.06.05,https://www2.moeaboe.gov.tw/oil102/oil2017/newmain.asp。
    [48] 環保署環境資源開放平台,各空品區污染源管制後排放量一覽表,擷取日期:2018.10.05,https://opendata.epa.gov.tw/Data/Contents/ATM00734/。
    [49] 環保署,2016年3月,新版空氣汙染物排放清冊建置。
    [50] 環保署,2017年5月,台灣空氣污染排放量[TEDS9]線源-排放量推估手冊。
    [51] 交通部運研所,2018年5月,降低移動汙染源管理措施蒐集語彙析。
    [52] 陳惠國,2019年2月,研究分析方法課程講義。

    QR CODE
    :::