| 研究生: |
巫柏翰 Bo-Han Wu |
|---|---|
| 論文名稱: |
以即時中子繞射研究鎳基合金Inconel 617 高溫疲勞行為 Temperature-Effect Study on the Fatigue Behavior of Inconel Alloy 617 by in-situ Neutron-Diffraction Investigation |
| 指導教授: |
黃爾文
E-Wen Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 中子繞射 、疲勞 、拉伸 、鎳基合金 |
| 外文關鍵詞: | Neutron-diffraction, fatigue, tension, Nickel-based alloy |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以即時中子繞射,研究鎳基超合金Inconel617的高溫疲勞行為。比較室溫、600˚C及850˚C下,疲勞循環應力加載所造成的結構改變。並藉由單軸拉伸實驗結果,比較不同巨觀形變模式所帶來的微結構如晶粒大小及差排衍生的變化。根據這兩個實驗的比較,本論文觀察到巨觀蠕變曲線改變趨勢依環境溫度而異,各溫度下不同形變方式所量到的中子數據也反應出不同的微觀特徵。比較參考文獻,本研究推論造成蠕變不同階段的機制可由中子繞射實驗偵測得到。本研究進一步歸納中子數據特徵,比對典型蠕變曲線中三階段不同的蠕變機制。
Abstract
We investigate high temperature creep-fatigue properties of nickel-based superalloy, Inconel 617, by in-situ neutron-diffraction. We examined the microstructure subjected to monotonic and cyclic tensile loading under room temperature, 600˚C and 850˚C, respectively. The variations in microstructure caused by different deformation modes are compared. The trends in macroscopic creep curves subjected to different environmental temperatures show different features. Comparing to classic deformation map, we conclude that different creep stages on this materials is revisited. It is concluded that the main contribution of the increase in creep speed of tertiary creep is due to the increase of dislocation density, but not the variation of the lattice strain.
1. Da Silva, L.L., T.R. Mansur, and C.A. Cimini Junior, Thermal fatigue damage evaluation of a PWR NPP steam generator injection nozzle model subjected to thermal stratification phenomenon. Nuclear engineering and design, 2011. 241(3): p. 672-680.1
2. Kihara, S., et al., Morphological changes of carbides during creep and their effects on the creep properties of Inconel 617 at 1000 C. Metallurgical Transactions A, 1980. 11(6): p. 1019-1031.
3. Christ, H.-J., et al., High temperature corrosion of the nickel-based alloy Inconel 617 in helium containing small amounts of impurities. Materials Science and Engineering, 1987. 87: p. 161-168.
4. Tan, L., et al., Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants. Corrosion Science, 2008. 50(11): p. 3056-3062.
5. Jalilian, F., M. Jahazi, and R. Drew, Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni–Si–B filler metal. Materials Science and Engineering: A, 2006. 423(1): p. 269-281.
6. Kewther Ali, M., M. Hashmi, and B. Yilbas, Fatigue properties of the refurbished INCO-617 alloy. Journal of materials processing technology, 2001. 118(1): p. 45-49.
7. 劉國雄, 工程材料科學. 2006: 全華.
8. 謝坤翰 and 陳澄河, 高分子特性概論-潛變, 應力鬆弛, 疲勞試驗 (47404). 2010.
9. Tapkın, S. and M. Keskin, Rutting analysis of 100 mm diameter polypropylene modified asphalt specimens using gyratory and Marshall compactors. Materials Research, 2013. 16(2): p. 546-564.
10. Huang, E., et al., A neutron-diffraction study of the low-cycle fatigue behavior of HASTELLOY< sup>®</sup> C-22HS< sup> TM</sup> alloy. International Journal of Fatigue, 2007. 29(9): p. 1812-1819.
11. Ashby, M.F., A first report on deformation-mechanism maps. Acta Metallurgica, 1972. 20(7): p. 887-897.
12. Clausen, B., T. Lorentzen, and T. Leffers, Self-consistent modelling of the plastic deformation of fcc polycrystals and its implications for diffraction measurements of internal stresses. Acta Materialia, 1998. 46(9): p. 3087-3098.
13. Krawitz, A.D., Introduction to diffraction in materials science and engineering. Introduction to Diffraction in Materials Science and Engineering, by Aaron D. Krawitz, pp. 424. ISBN 0-471-24724-3. Wiley-VCH, April 2001., 2001. 1.
14. Wang, H., et al., Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension. Acta Materialia, 2012.
15. Weidner, D.J., et al., Effect of plasticity on elastic modulus measurements. Geophysical research letters, 2004. 31(6).
16. Dieter, G.E. and D. Bacon, Mechanical metallurgy. Vol. 3. 1986: McGraw-Hill New York.
17. Abe, J., et al. High pressure experiments with the Engineering Materials Diffractometer (BL-19) at J-PARC. in Journal of Physics: Conference Series. 2010. IOP Publishing.
18. Jin, X., et al., Residual strain dependence on the matrix structure in RHQ-Nb3Al wires by neutron diffraction measurement. Superconductor Science and Technology, 2012. 25(6): p. 065021.
19. Huang, E.-W., et al., Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. International Journal of Plasticity, 2008. 24(8): p. 1440-1456.
20. Huang, E.-W., et al., Fatigue-induced reversible/irreversible structural-transformations in a Ni-based superalloy. International Journal of Plasticity, 2010. 26(8): p. 1124-1137.
21. Cheng, S.-K. and C.-Y. Chen, Mechanical properties and strain-rate effect of EVA/PMMA in situ polymerization blends. European polymer journal, 2004. 40(6): p. 1239-1248.
22. Wu, S.-Y., Strain-rate-effect on the Lattice-strain Evolution in Polycrystalline Nickel Alloy. 2012.
23. Inconel alloy 617.pdf. http://www.specialmetals.com/documents
24. Healey, P., et al., X-ray determination of the dislocation densities in semiconductor crystals using a Bartels five-crystal diffractometer. Acta Crystallographica Section A: Foundations of Crystallography, 1995. 51(4): p. 498-503.
25. Gopinadhan, M., et al., Order-disorder transition and alignment dynamics of a block copolymer under high magnetic fields by in situ x-ray scattering. Physical Review Letters, 2013. 110(7): p. 078301.
26. Huang, E.-W., et al., Slip-system-related dislocation study from in-situ neutron measurements. Metallurgical and Materials Transactions A, 2008. 39(13): p. 3079-3088.
27. Wu, Y., et al., In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Applied Physics Letters, 2014. 104(5): p. 051910.
28. Mo, K., et al., Mechanism of plastic deformation of a Ni-based superalloy for VHTR applications. Journal of Nuclear Materials, 2013. 441(1): p. 695-703.
29. Jeong, J., et al., In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels. Acta Materialia, 2012. 60(5): p. 2290-2299.
30. Evans, W., J. Jones, and S. Williams, The interactions between fatigue, creep and environmental damage in Ti 6246 and Udimet 720Li. International journal of fatigue, 2005. 27(10): p. 1473-1484.
31. Akiniwa, Y., et al., Evaluation of material properties of SiC particle reinforced aluminum alloy composite using neutron and X-ray diffraction. Materials Science and Engineering: A, 2006. 437(1): p. 93-99.
32. McClay, K., Pressure solution and Coble creep in rocks and minerals: a review. Journal of the Geological Society, 1977. 134(1): p. 57-70.
33. Ashby, M. and R. Verrall, Diffusion-accommodated flow and superplasticity. Acta Metallurgica, 1973. 21(2): p. 149-163.
34. Coble, R., A model for boundary diffusion controlled creep in polycrystalline materials. Journal of Applied Physics, 1963. 34(6): p. 1679-1682.
35. Mei, S. and D. Kohlstedt, Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. Journal of Geophysical Research: Solid Earth (1978–2012), 2000. 105(B9): p. 21471-21481.
36. Deformation mechanism maps.
37. Kim, W.-G., et al., Creep behaviour and long-term creep life extrapolation of alloy 617 for a very high temperature gas-cooled reactor. Transactions of the Indian Institute of Metals, 2010. 63(2-3): p. 145-150.
38. Hayes, R. and P. Martin, Tension creep of wrought single phase< i> γ</i> TiAl. Acta metallurgica et materialia, 1995. 43(7): p. 2761-2772.