跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭鈺潔
Yu-Chieh Cheng
論文名稱: 漸進式週期光子晶體共振腔之研究
Study of Graded Photonic Crystal Cavities
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 73
中文關鍵詞: 共振腔光子晶體
外文關鍵詞: cavities, Photonic crystals
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文選擇在氮化鎵材料製作二維漸進式週期光子晶體共振腔,使光有效侷限於其中。以平面波展開法(Plane Wave Expansion, PWE) 與有限時域差分法(Finite-Difference-Time-Domain, FDTD)來分析漸進式週期光子晶體共振腔之特性,計算出結構參數,也以光侷限之方法來分析共振腔在垂直方向上的損耗,以及解釋為何高階模態會有較高的Q值。在室溫下架設微光激發光系統(Micro-Photoluminescence,???PL),量測結果發現,當激發光源功率大於0.9 mW時,成功量得於波長於?=362 nm 之雷射訊號,以高斯擬合得到半高寬為0.04 nm,換算 Q值為1×104。


    In this study, the photonic crystals nanocavity has been designed, fabricated, and characterized in GaN bulk materials with the heterostructure which could achieve extremely high-Q factors. The device characterization was performed at room temperature using a micro-photoluminescence system. We obtain a lasing signal whose full width at half maximum (FWHM) obtained by Gaussian curve fitting is ??=0.04 nm for ?=362 nm and the threshold of excitation power is found to be 0.9 mW, corresponding to the power density of 17 kmW/cm2. The Q-factor of the cavity is as high as 104.

    摘要 ................................................................................................ I Abstract ............................................................................................... II 目錄 ............................................................................................. III 圖目錄 ............................................................................................. VI 表目錄 ............................................................................................. IX 第一章 序論 ........................................................................................ 1 1.1 光子晶體簡介 ......................................................................... 1 1.2 光子晶體共振腔文獻回顧 ...................................................... 6 1.3 研究動機 .............................................................................. 10 1.4 結論 ...................................................................................... 10 第二章 理論及模擬方法 ................................................................... 11 2.1 平面波展開法 ....................................................................... 11 2.2 有限時域差分法 ................................................................... 12 2.3 品質因子計算 ....................................................................... 17 2.4 共振腔之光侷限 ................................................................... 18 2.5 結論 ...................................................................................... 21 第三章 超高品質光子晶體共振腔設計 ............................................. 22 3.1 漸進式週期光子晶體共振腔原理介紹.................................. 22 3.2 漸進式週期光子晶體共振腔之設計與模擬 .......................... 25 3.2-1 能帶計算 ....................................................................... 26 3.2-2 共振頻率及模態計算 .................................................... 28 3.2-3 Q 值計算 ....................................................................... 32 3.2-4 光侷限之分析 ............................................................... 34 3.3 結論 ...................................................................................... 36 第四章 元件製程與量測 ................................................................... 37 4.1 元件製作方法 ....................................................................... 37 4.2 元件製程結果 ....................................................................... 39 4.3 量測系統介紹 ....................................................................... 41 4.4 光學量測 .............................................................................. 43 4.5 實驗誤差分析與討論 ............................................................ 51 4.6 結論 ...................................................................................... 52 第五章 結論與未來展望 ................................................................... 54 參考文獻 ………………………………………………………………….55

    [1]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [2]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [3]欒丕綱、陳啟昌,「光子晶體—從蝴蝶翅膀到奈米光子學」,二版,五南圖書出版公司,台北 (2010)。
    [4]J. D. Joannopoulos, S. G. Johnson, J. N. Winn et al., “Photonic Crystals - Molding the Flow of Light,” Second Edition, Princeton University Press, 41 William Street, Princeton, New Jersey 08540 (2008).
    [5]http://www.lostseaopals.com.au/opals/index.asp
    [6]A. R. Parker, V. L. Welch, D. Driver et al., “Structural colour - Opal analogue discovered in a weevil,” Nature 426, 786 (2003).
    [7]E. Pennisi, “Naturalist''s Surveys Show That British Butterflies Are Going, Going...,” Science 303, 1747 (2004).
    [8]http://nanotechweb.org/cws/article/tech/36244
    [9]C. Kittle, “Introduction to Solid State Physics,” 7th Ed., John Wiley & Sons, USA (2001).
    [10]P. R. Berman, “Cavity quantum electrodynamics,” Academy (1994).
    [11]B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155 (1998).
    [12]O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
    [13]O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, P. D. Dapkus., “Lithographic Tuning of a Two-Dimensional Photonic Crystal Laser Array,” IEEE Photo. Tech. Lett. 12, 1126(2000).
    [14]J. P. Dowling, M. Scalora, M. J. Bloemer, C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
    [15]M. I., S. Noda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316 (1999).
    [16]W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B.Kochman, E. W. Berg, P. C. Yu, S. W. Pang, “Characteristics of a Photonic Bandgap Single Defect Microcavity Electroluminescent Device,” IEEE J. Quantum Electron. 37, 1153 (2001).
    [17]O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
    [18]H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, J. S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883 (2002).
    [19]K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoğlu, P. M. Petroff, E. Hua, G. Jin, S. Shi, D. W. Prather, “Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots, Appl. Phys. Lett. 83, 3650 (2003).
    [20]K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915 (2003).
    [21]C. Meier, K. Hennessy, E. D. Haberer, R. Sharma, Y. S. Choi, K. McGroddy, S. Keller, S. P. DenBaars, S. Nakamura, E. L. Hu, “Visible resonant modes in GaN-based photonic crystal membrane cavities,” Appl. Phys. Lett. 88, 031111 (2006).
    [22]Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
    [23]H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032 (2001).
    [24]H. G. Park, J. K. Hwang, J. H., H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers,” IEEE J. Quantum Electron. 38, 1353 (2002).
    [25]A. Sugitatsu, T. Asano, S. Noda, “Line-defect- waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 86, 171106 (2005).
    [26]S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photon. 1, 449 (2007).
    [27]Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206 (2007).
    [28]C. Kim, W. J. Kim, A. Stapleton, J. R. Cao, J. D. O''Brien, P. D. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19, 1777 (2002).
    [29]X. H. Yang, T. J. Schmidt, W. Shan, J. J. Song, B. Goldenberg, “Above room temperature near ultraviolet lasing from an optically pumped GaN film grown on sapphire,” Appl. Phys. Lett. 66, 1 (1995).
    [30]X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, H. Cao, ” Ultraviolet photonic crystal laser,” Appl. Phys. Lett. 85, 3657 (2004).
    [31]L. M. Chang, C. H. Hou, Y. C. Ting, C. C. Chen, C. L. Hsu, J. Y. Chang, C. C. Lee, G. T. Chen, and J. I. Chyi, "Laser emission from GaN photonic crystals," Appl. Phys. Lett. 89, 071116 (2006).
    [32]C. F. Lai, P. Yu, T. C. Wang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. K. Lee, "Lasing characteristics of a GaN photonic crystal nanocavity light source," Appl. Phys. Lett. 91, 041101 (2007).
    [33]H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, "GaN photonic-crystal surface-emitting laser at blue-violet wavelengths," Science 319, 445 (2008).
    [34]T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, and S. Fan, "GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN∕ GaN distributed Bragg reflector," Appl. Phys. Lett. 92, 011129 (2008).
    [35]K. Rivoire, A. Faraon, and J. Vuckovic, "Gallium phosphide photonic crystal nanocavities in the visible," Appl. Phys. Lett. 93, 063103 (2008).
    [36]S. W. Chen, T. C. Lu, and T. T. Kao, "Study of GaN-Based Photonic Crystal Surface-Emitting Lasers (PCSELs) With AlN/GaN Distributed Bragg Reflectors," Selected Topics in Quantum Electronics, IEEE Journal of 15, 885 (2009).
    [37]J. Y. Zhang, L. E. Cai, B. P. Zhang, S. Q. Li, F. Lin, J. Z. Shang, D. X. Wang, K. C. Lin, J. Z. Yu, and Q. M. Wang, "Blue-Violet Lasing of Optically Pumped GaN-Based Vertical Cavity Surface-Emitting Laser With Dielectric Distributed Bragg Reflectors," Lightwave Technology, Journal of 27, 59 (2009).
    [38]C. H. Lin, J. Y. Wang, C. Y. Chen, K. C. Shen, D. M. Yeh, Y. W. Kiang and C. Yang, "A GaN photonic crystal membrane laser," Nanotechnology 22, 025201 (2011).
    [39]K. Sakoda, “Opticcal Properties of Photonic Crystal,” Springer-Verlag, 2004.
    [40]K.S.Yee,” Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag, 14, 302 (1966).
    [41]K. Kawano and T. Kitoh, “Introduction to Optical Waveguide Analysis,” WILEY, (2001).
    [42]T. Ochiai, K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B. 63, 125107 (2001).
    [43]C. Kim, W. J. Kim, A. Stapleton, J. R. Cao, J. D. O''Brien, P. D. Dapkus, “Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,” J. Opt. Soc. Am. B 19, 1777 (2002).
    [44]H. Y. Ryu, J. K. Hwang, Y. H. Lee, “The Smallest Possible Whispering-Gallery-Like Mode in the Square Lattice Photonic-Crystal Slab Single-Defect Cavity,” IEEE J. Quantum Electron. 39, 314 (2003).
    [45]K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," OPTICS EXPRESS 10, 671 (2002).
    [46]K. Srinivasan and O. Painter, "Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals," OPTICS EXPRESS 11, 579 (2003).
    [47]B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials 4, 207 (2005).
    [48]Y. Tanaka, T. Asano, and S. Noda, "Design of Photonic Crystal NanocavityWith Q-Factor of ~109," J. Lightwave Technol. 26, 1532 (2008).

    QR CODE
    :::