| 研究生: |
蔡孟軒 Meng-Shuan Tsai |
|---|---|
| 論文名稱: |
關於加權哈弟空間結合仿增長函數的一個註解 A Note on Weighted Hardy Spaces Associated to Para-accretive Functions |
| 指導教授: |
李明憶
Ming-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 20 |
| 中文關鍵詞: | 原子分解 、Calderon-Zygmund算子 、哈弟空間 、Plancherel-Polya不等式 、Calderon型再生公式 |
| 外文關鍵詞: | Plancherel-Polya inequality, Calderon-type reproducing formula, Hardy space, Calderon-Zygmund operators, Atomic decomposition |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們證明一個結合了仿增長函數的加權哈弟空間Hpb,w的子空間,它的一個新的原子分解,藉此得到一個線性算子有界性的檢定法。在應用上,利用到消失矩條件,我們證明某些種類的Calderon-Zygmund算子在Hpb,w空間上是有界的。
In this article, we prove a new atomic decomposition for the subspace of weight Hardy space associated to para-accretive function Hpb,w and then obtain a criterion of the boundedness of linear operator. As an application, we show some kinds of Calderon-Zygmund operators are bounded on Hpb,w under some vanishing condition.
[1] W. Chen, Y. Han, C. Miao, A note on the boundedness of Calderon-Zygmund operators on Hardy spaces, J. Math. Anal. Appl. 310 (2005), no.1, 57-67.
[2] D. David, J. L. Journe and S. Semmes, Operateurs de Calderon-Zygmund, fonctions para-accretives et interpolation, Rev. Mat. Iberoamericana, 1 (1985), 1-56.
[3] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[4] Y. Han, Calderon-type reproducing formula and Tb theorem, Rev. Mat. Iberoamericana, 10 (1994), 51-91.
[5] Y. Han, M.-Y. Lee, and C.-C. Lin, Hardy spaces and the Tb theorem, J. Geom. Anal. 14 (2004), 291-318.
[6] S.-H. Lan, and C.-C. Lin, Weighted Hardy spaces associated to para-accretive functions, Taiwanese J. Math. 14 (2010), no.3B, 1055-1078.
[7] M.-Y. Lee, and C.-C. Lin, Carleson measure spaces associated to para-accretive functions, submitted.
[8] B. Muckenhoupt,Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165, (2000), 207-226.
[9] Y. Meyer and R. Coifman, Wavelets. Calderon-Zygmund and Multilinear Operators, Cambridge University Press, Cambridge, 1997.
[10] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables, Acta. Math. 103 (1960), 25-62.