| 研究生: |
邱孝純 Shiau-Chuen Chiou |
|---|---|
| 論文名稱: |
即時回饋類型對於雙手協調動作學習之影響 Influence of Augmented Feedback Types on Bimanual Coordination Learning |
| 指導教授: |
張智宏
Erik C. Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 認知與神經科學研究所 Graduate Institute of Cognitive and Neuroscience |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 動作學習 、雙手協調 、導引效果 、回饋 |
| 外文關鍵詞: | motor learning, bimanual coordination, guidance effect, feedback |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在動作教學的過程中,常透過提供學習者與動作結果相關的回饋 (augmented feedback) 來幫助學習者更有效地掌握動作方式。然而,透過回饋引導動作的學習方式固然能讓學習者在學習階段達到一定程度的動作表現,卻也常因為學習者過度仰賴回饋,以致於在離開學習環境或脫離回饋機制之後,動作表現就無法維持,即所謂的「導引效果」(guidance effect)。過去研究顯示,不同的知覺回饋形式 (即視覺或聽覺) 對於學習者會產生不同程度的導引效果,其原因直觀上似乎為回饋呈現的知覺類型 (perceptual modality) 所導致,但現有研究設計中並未排除來自回饋本身訊息型態 (information type) 之混淆。本研究採用一項雙手協調作業,即運動相位角相差90度之協調動作 (90°-out-of-phase coordination pattern),讓受試者在三種不同的回饋情境下學習:視覺空間圖像 (Lissajous)、視覺節奏,以及聽覺節奏,藉此探討不同知覺類型或訊息型態的回饋將如何影響動作學習。研究結果顯示,視知覺的強勢性 (visual dominance) 並非導引效果產生的主因,回饋所提供的訊息型態對於動作表現和學習的影響更為顯著。另外,在雙重作業 (dual-task) 的干擾情境下,學習者的動作表現相較於單一作業的情境亦普遍提升,進一步顯示較低的認知參與以及較少的意識控制策略可能有助於協調動作的表現。
Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory feedback than with visual feedback. However, it is unclear whether this differential “guidance effect” between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory feedback channel or stronger linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as the secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination.
Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14(3), 257-262.
Arias, P., & Cudeiro, J. (2008). Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson's disease patients. Experimental Brain Research, 186(4), 589-601.
Arrighi, R., Alais, D., & Burr, D. (2006). Perceptual synchrony of audiovisual streams for natural and artificial motion sequences. Journal of Vision, 6(3), 260-268.
Bengtsson, S. L., Ullen, F., Ehrsson, H. H., Hashimoto, T., Kito, T., Naito, E., . . . Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 62-71.
Brown, S. W. (1997). Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics, 59(7), 1118-1140.
Buchanan, J. J., & Wang, C. (2012). Overcoming the guidance effect in motor skill learning: feedback all the time can be beneficial. Experimental Brain Research, 219(2), 305-320.
Carlini, A., & French, R. (2014). Visual tracking combined with hand-tracking improves time perception of moving stimuli. Scientific Reports, 4, 5363.
Cattaert, D., Semjen, A., & Summers, J. J. (1999). Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biological Cybernetics, 81(4), 343-358.
Chen, Y., Repp, B. H., & Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: Comparisons between auditory and visual pacing and feedback conditions. Human Movement Science, 21(4), 515-532.
Colavita, F. B. (1974). Human sensory dominance. Perception & Psychophysics, 16(2), 409-412.
Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2003). Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. NeuroImage, 19(3), 764-776.
Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2004). Changes in brain activation during the acquisition of a new bimanual coodination task. Neuropsychologia, 42(7), 855-867.
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429-433.
Forster, B., Cavina-Pratesi, C., Aglioti, S. M., & Berlucchi, G. (2002). Redundant target effect and intersensory facilitation from visual-tactile interactions in simple reaction time. Experimental Brain Research, 143(4), 480-487.
Franz, E. A., Zelaznik, H. N., Swinnen, S., & Walter, C. (2001). Spatial conceptual influences on the coordination of bimanual actions: when a dual task becomes a single task. Journal of Motor Behavior, 33(1), 103-112.
Freides, D. (1974). Human information processing and sensory modality: cross-modal functions, information complexity, memory, and deficit. Psychololgical Bulletin, 81(5), 284-310.
Giard, M. H., & Peronnet, F. (1999). Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11(5), 473-490.
Gibson, J. J. (1933). Adaptation, after-effect and contrast in the perception of curved lines. Journal of Experimental Psychology, 16(1), 1-31.
Haken, H., Kelso, J. A., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347-356.
Hermann, T., & Hunt, A. (2005). Guest Editors' Introduction: An Introduction to Interactive Sonification. MultiMedia, IEEE, 12(2), 20-24.
Holcombe, A. O. (2009). Seeing slow and seeing fast: two limits on perception. Trends in Cognitive Sciences, 13(5), 216-221.
Hove, M. J., Fairhurst, M. T., Kotz, S. A., & Keller, P. E. (2013). Synchronizing with auditory and visual rhythms: an fMRI assessment of modality differences and modality appropriateness. NeuroImage, 67, 313-321.
Irwin, R. J., Hinchcliff, L. K., & Kemp, S. (1981). Temporal acuity in normal and hearing-impaired listeners. International Journal of Audiology, 20(3), 234-243.
Kagerer, F. A., Summers, J. J., & Semjen, A. (2003). Instabilities during antiphase bimanual movements: are ipsilateral pathways involved? Experimental Brain Research, 151(4), 489-500.
Keele, S. W. (1968). Movement control in skilled motor performance. Psychololgical Bulletin, 70(6), 387-403.
Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual coordination. The American Journal of Physiology, 246(6 Pt 2), R1000-1004.
Kelso, J. A. S., Scholz, J. P., & Schöner, G. (1986). Nonequilibrium phase transitions in coordinated biological motion: critical fluctuations. Physics Letters A, 118(6), 279-284.
Kennerley, S. W., Diedrichsen, J., Hazeltine, E., Semjen, A., & Ivry, R. B. (2002). Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nature Neuroscience, 5(4), 376-381.
Klapp, S. T., Nelson, J. M., & Jagacinski, R. J. (1998). Can people tap concurrent bimanual rhythms independently? Journal of Motor Behavior, 30(4), 301-322.
Konoike, N., Kotozaki, Y., Miyachi, S., Miyauchi, C. M., Yomogida, Y., Akimoto, Y., . . . Nakamura, K. (2012). Rhythm information represented in the fronto-parieto-cerebellar motor system. NeuroImage, 63(1), 328-338.
Kostrubiec, V., Zanone, P. G., Fuchs, A., & Kelso, J. A. (2012). Beyond the blank slate: routes to learning new coordination patterns depend on the intrinsic dynamics of the learner-experimental evidence and theoretical model. Frontiers in Human Neuroscience, 6, 222.
Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009a). Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy! Experimental Brain Research, 193(1), 129-136.
Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009b). Using scanning trials to assess intrinsic coordination dynamics. Neuroscience Letters, 455(3), 162-167.
Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2010a). Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Experimental Brain Research, 201(2), 249-259.
Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2010b). Perceptual and attentional influences on continuous 2:1 and 3:2 multi-frequency bimanual coordination. Journal of Experimental Psychology. Human Perception and Performance, 36(4), 936-954.
Kovacs, A. J., & Shea, C. H. (2010). Amplitude differences, spatial assimilation, and integrated feedback in bimanual coordination. Experimental Brain Research, 202(2), 519-525.
Kovacs, A. J., & Shea, C. H. (2011). The learning of 90 degrees continuous relative phase with and without Lissajous feedback: external and internally generated bimanual coordination. Acta Psychologica, 136(3), 311-320.
Lee, T. D., Swinnen, S. P., & Verschueren, S. (1995). Relative Phase Alterations During Bimanual Skill Acquisition. Journal of Motor Behavior, 27(3), 263-274.
Lieberman, J., & Breazeal, C. (2007). Development of a wearable vibrotactile feedback suit for accelerated human motor learning. Paper presented at the Robotics and Automation, 2007 IEEE International Conference on.
Lissajous, M. J. (1857). Mémoire sur l'etude optique des mouvements vibratoires. Annales de Chimie et de Physique, 51.
Logan, G. D. (1991). Automaticity and memory. In H. Lewandowsky S., W. E. (Ed.), Relating theory and data: Essays on human memory in honor of Bennet B. Murdock (pp. 347-366).
Logan, G. D., & Compton, B. J. (1998). Attention and automaticity Visual attention (pp. 108-131). New York, NY, US: Oxford University Press.
Logan, G. D., Taylor, S. E., & Etherton, J. L. (1999). Attention and automaticity: Toward a theoretical integration. Psychological Research, 62(2-3), 165-181.
Magill, R. A. (2011). Motor learning and control : concepts and applications (9th ed.). New York: McGraw-Hill.
Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414(6859), 69-73.
Mechsner, F., & Knoblich, G. (2004). Do muscles matter for coordinated action? Journal of Experimental Psychology: Human Perception and Performance, 30(3), 490.
Minogue, J., & Jones, M. G. (2006). Haptics in education: exploring an untapped sensory modality. Review of Educational Research, 76(3), 317-348.
Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological review, 86(3), 214.
Peirce, J. W. (2007). PsychoPy--Psychophysics software in Python. Journal of Neuroscience Methods, 162(1-2), 8-13.
Peirce, J. W. (2008). Generating Stimuli for Neuroscience Using PsychoPy. Frontiers in Neuroinformatics, 2(10).
Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance: an information-processing account of its origins and significance. Psychololgical Review, 83(2), 157-171.
Proteau, L., Marteniuk, R. G., Girouard, Y., & Dugas, C. (1987). On the type of information used to control and learn an aiming movement after moderate and extensive training. Human Movement Science, 6, 181-199.
Proteau, L., Marteniuk, R. G., & Levesque, L. (1992). A sensorimotor basis for motor learning: evidence indicating specificity of practice. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 44(3), 557-575.
Ronsse, R., Puttemans, V., Coxon, J. P., Goble, D. J., Wagemans, J., Wenderoth, N., & Swinnen, S. P. (2011). Motor learning with augmented feedback: modality-dependent behavioral and neural consequences. Cerebral Cortex, 21(6), 1283-1294.
Rossignol, S., & Jones, G. M. (1976). Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Electroencephalography and Clinical Neurophysiology, 41(1), 83-92.
Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychololgical Bulletin, 95(3), 355-386.
Schmidt, R. A. (1975). A Schema Theory of Discrete Motor Skill Learning. Psychololgical Review, 82(4), 225-260.
Schmidt, R. A., Lange, C., & Young, D. E. (1990). Optimizing summary knowledge of results for skill learning. Human Movement Science, 9, 325-348.
Schmidt, R. A., & McCabe, J. F. (1976). Motor Program Utilization Over Extented Practice. Journal of Human Movement Studies, 2, 239-247.
Schmidt, R. A., Young, D. E., Swinnen, S., & Shapiro, D. C. (1989). Summary knowledge of results for skill acquisition: support for the guidance hypothesis. Journal of Experimental Psychology. Learning, Memory, and Cognition, 15(2), 352-359.
Schoner, G., & Kelso, J. A. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239(4847), 1513-1520.
Shams, L., & Seitz, A. R. (2008). Benefits of multisensory learning. Trends in Cognitive Sciences, 12(11), 411-417.
Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychonomic Bulletin & Review, 20(1), 21-53.
Strumillo, P. (2011). Advances in Sound Localization: InTech.
Swinnen, S. P. (1998). Age-related deficits in motor learning and differences in feedback processing during the production of a bimanual coordination pattern. Cognitive Neuropsychology, 15(5), 439-466.
Swinnen, S. P., Dounskaia, N., Walter, C. B., & Serrien, D. J. (1997). Preferred and induced coordination modes during the acquisition of bimanual movements with a 2:1 frequency ratio. Journal of Experimental Psychology: Human Perception and Performance, 23(4), 1087-1110.
Swinnen, S. P., Lee, T. D., Verschueren, S., Serrien, D. J., & Bogaerds, H. (1997). Interlimb coordination: Learning and transfer under different feedback conditions. Human Movement Science, 16(6), 749-785.
Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1), 18-25.
Thaut, M. H., & Abiru, M. (2010). Rhythmic Auditory Stimulation in Rehabilitation of Movement Disorders: A Review Of Current Research. Music Perception, 27(4), 263-269.
Thaut, M. H., Kenyon, G. P., Schauer, M. L., & McIntosh, G. C. (1999). The connection between rhythmicity and brain function. IEEE Engineering in Medicine and Biology Magazine, 18(2), 101-108.
van Beers, R. J., Sittig, A. C., & van der Gon, J. J. D. (1999). Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology, 81(3), 1355-1364.
Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychololgical Bulletin, 88(3), 638-667.
Winstein, C. J., & Schmidt, R. A. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology, 16(4), 677-691.
Winter, D. A. (2009). Biomechanics and motor control of human movement (4th ed.). Hoboken, N.J.: Wiley.
Wulf, G. (2013). Attentional focus and motor learning: a review of 15 years. International Review of Sport and Exercise Psychology, 6(1), 77-104.
Wulf, G., McNevin, N., & Shea, C. H. (2001). The automaticity of complex motor skill learning as a function of attentional focus. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 54(4), 1143-1154.
Wulf, G., Shea, C., & Park, J. H. (2001). Attention and motor performance: preferences for and advantages of an external focus. Research Quarterly for Exercise and Sport, 72(4), 335-344.