| 研究生: |
詹識懷 Shih-Huai Chan |
|---|---|
| 論文名稱: |
增加一般式鈣鈦礦太陽能電池光電轉換效率與長時間穩定性的探討 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、染料 |
| 外文關鍵詞: | Perovskite Solar Cell, Dye |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,科學界對「有機-無機鈣鈦礦太陽能電池(PSC)」產生極大的關注,因為PSC製程簡單、材料價格便宜且具有高的光電轉換效率等優點。然而,若使用溶劑工程法製備鈣鈦礦膜,無法精準控制鈣鈦礦的結晶,所得膜有許多晶界(Grain boundary),影響所組裝之元件的光伏表現和長時間穩定性。本研究將「釕金屬染料(N749、CYK-17、CYK-18、CYK-19)、有機染料(BTI-3、BTI-19、INDT-1)」旋轉塗佈於鈣鈦礦膜的表面,填補鈣鈦礦膜表面的缺陷,並擴大其在長波長的吸光能力,增加元件的光電轉換效率與穩定性。但是上述七種染料修飾物,只有釕金屬染料(N749、CYK-17)與有機染料(BTI-19)修飾鈣鈦礦膜所組裝之元件的光電轉換效率,比未經染料修飾Psk膜之元件高出1%以上。從IR光譜圖看到,染料結構中的羧基(R-COOH)與硫氰酸根(SCN)的波數,有紅位移的現象。證明染料會與鈣鈦礦的鉛離子產生作用力。從接觸角得知,鈣鈦礦膜經染料修飾後的接觸角為(Psk/N749:75.6o、Psk/CYK-17:75.6o、Psk/BTI-19:78.8o)大於未經修飾之鈣鈦礦膜(Psk:56.5o),推得鈣鈦礦膜經染料修飾形成疏水的表面,減少水氣的吸附,延長鈣鈦礦膜的壽命。從光致螢光光譜圖得知,鈣鈦礦膜經染料修飾的螢光強度,皆比未經染料修飾的鈣鈦礦膜強。推得鈣鈦礦膜經染料修飾,能增加激子的生命期,減少電子與電洞發生再結合的機率。相較鈣鈦礦膜為吸收層所組裝之元件的光電轉換效率(17.70%),染料修飾鈣鈦礦膜組裝之元件的光電轉換效率(Psk/N749(cell):19.62%、Psk/CYK-17(cell):18.66%、Psk/BTI-19(cell):19.08%),並且將元件放置於大氣環境與手套箱中,皆比Psk(cell)有較好的穩定性。因此使用染料塗佈於鈣鈦礦膜組裝之元件,是同時增加元件效率和穩定性的有效方法。
Perovskite solar cells (PSCs) based on organic-inorganic hybrid lead halide perovskite absorber has attracted great attention from the new generation PV community. PSCs has the characteristics of simple process, cheap material, and high power conversion efficiency. However, perovskite film prepared with solvent engineering, the crystallization cannot be controlled precisely. As a result, the film has many grain boundaries which affect the photovoltaic performance and long-term stability of the resulting photovoltaic devices. In this study, several Ruthenium dyes (such as N749, CYK-17, CYK-18, CYK-19) and organic dyes (such as BTI-3, BTI-19, INDT-1) were spin-coated on the top of the perovskite film to remedy the defects on the surface of the perovskite film to enhance the efficiency and stability of the cells. Among the above seven dye modifications, only N749, CYK-17 (ruthenium dyes) and BTI-19 (organic dye) can increase the efficiency of the cell. IR spectra evidenced the shift of absorption peaks of the carboxyl group (R-COOH) and thiocyanate (SCN) in the dye molecule suggesting the interaction between dye molecules and Pb+2 in perovskite. The contact angle of the perovskite film increases after modifying with dye molecules (Psk : 56.5o, Psk/N749: 75.6o, Psk/CYK-17: 75.6o, Psk/BTI-19: 78.8o) to create more hydrophobic surface. Consequently, the stability of the modified perovskite film as well as the corresponding devices enhanced. The photoluminescence intensity and life-time proved that dye modification can increase the life of the exactions and reduce the charge recombination of the perovskite film. The efficiency of the cell based on unmodified perovskite is 17.70% which is smaller than those based on dye-modified perovskite solar cell (Psk/N749(cell) : 19.62%, Psk/CYK-17(cell) : 18.66%, Psk/BTI-19(cell) : 19.08%). Furthermore, the longer stability of the cell based on dye modified absorber is better than that used unmodified perovskite absorber both in ambient atmosphere and glove box.
參考資料
【1】 https://en.wikipedia.org/wiki/Solar_cell
【2】 https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies (2019年8月2號)
【3】 Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051
【4】 Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Gra¨tzel & Nam-Gyu Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Sci Rep, 2012, 2, 591.
【5】 https://en.wikipedia.org/wiki/Perovskite
【6】 Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, Tae-Youl Yang, Yong Guk Lee, Geunjin Kim, Hee-Won Shin, Sang Seok, Jaemin Lee and Jangwon Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells” Nature Energy, 2018, 7, 682-689
【7】 Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng and Jinsong Huang, “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Science Advances, 2019, 3, 8925
【8】 Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519-522
【9】 Zhaoning Song, Suneth C. Watthage, Adam B. Phillips, Michael J. Heben, “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications”, J. Photon. Energy 6, 2016, 022001
【10】 Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051.
【11】 Chien-Hung Chiang, Jun-Wei Lin, Chun-Guey Wu, “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
【12】 Chien-Hung Chiang, Jun-Wei Lin, Chun-Guey Wu, “Planar Heterojunction Perovskite/ PC71BM Solar Cells with Efficiency Over 16% via (2/1)-step Spin-Coating Process”, J. Mater. Chem. A, 2014, 2, 15897-15903.
【13】 Chien-Hung Chiang, Mohammad Khaja Nazeeruddin, Michael Grätzelc, Chun-Guey Wu, “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
【14】 Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu, Sang Il Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nature Materials, 2014, 13, 897-903.
【15】 Chien-Hung Chiang, Chun-Guey Wu, “Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells”, ChemSusChem, 2016, 9, 2666-2672.
【16】 Gregor Kieslich, Shijing Suna, Anthony K. Cheetham, “An extended Tolerance Factor approach for organic–inorganic perovskites”, Chem. Sci., 2015, 6, 3430-3433
【17】 Miguel Anaya, Gabriel Lozano, Mauricio E. Calvo, Herna´n Mı´guez1, “ABX3 Perovskites for Tandem Solar Cells”, joule 1, 2017, 769-793
【18】 Min Hu, Linfeng Liu, Anyi Mei, Ying Yang, Tongfa Liu, Hongwei Han, “Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3” J. Mater. Chem. A, 2014, 2, 17115-17121
【19】 Luis K. Ono, Emilio J. Juarez-Perez, Yabing Qi, “Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions”, ACS Appl. Mater. Interfaces, 2017, 9, 36
【20】 Nam Joong Jeon, Jun Hong Noh, Woon Seok Yang, Young Chan Kim, Seungchan Ryu, Jangwon Seo & Sang Il Seok, “Compositional engineering of perovskite materials for high-performance solar cells”, Nature, 2015, 517, 476-480
【21】 Dongqin Bi, Wolfgang Tress, M. Ibrahim Dar, Peng Gao, Jingshan Luo, Clémentine Renevier, Kurt Schenk, Antonio Abate, Fabrizio Giordano, Juan-Pablo Correa Baena, Jean-David Decoppet, Shaik Mohammed Zakeeruddin, Mohammad Khaja Nazeeruddin, Michael Grätzel and Anders Hagfeldt “Efficient Luminescent Solar Cells Based on Tailored Mixed-Cation Perovskites”Sci. Adv. 2016, 2, 1501170
【22】 Dongqin Bi, Chenyi Yi, Jingshan Luo1, Jean-David Décoppet, Fei Zhang, Shaik Mohammed Zakeeruddin, Xiong Li, Anders Hagfeldt and Michael Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%”, Nature Energy, 2016, 9, 16142
【23】 Ting Qiu, Yanqiang Hu, Fan Bai, Xiaoliang Miao, Shufang Zhang, “Improved performance and stability of perovskite solar cells by incorporating gamma-aminobutyric acid in CH3NH3PbI3”, Journal of Materials Chemistry A, 2018, 6, 12370-12380
【24】 Nikolaos Balis, Alaa A. Zaky, Dorothea Perganti, Andreas Kaltzoglou, Lamprini Sygellou, Fotios Katsaros, Thomas Stergiopoulos, Athanassios G. Kontos, Polycarpos Falaras, “ Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells ”, ACS Appl. Energy Mater, 2018, 1, 6161-6171
【25】 Xing Li, Chun‐Chao Chen, Molang Cai, Xin Hua, Fengxian Xie, Xiao Liu, Jianli Hua, Yi‐Tao Long, He Tian, Liyuan Han, “Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with COOH Functional Group”, Advanced Energy Materials, 2018, 7, 1800715
【26】 Brent A. Koscher, Joseph K. Swabeck, Noah D. Bronstein and A. Paul Alivisatos, “Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment”, J. Am. Chem. Soc., 2017, 139, 19, 6566-6569
【27】 Hao Zhang, Yongzhen Wu,Chao Shen, Erpeng Li, Chenxu Yan, Weiwei Zhang, He Tian, Liyuan Han, Wei‐Hong Zhu, “Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring”, Advanced Energy Materials, 2019, 4, 1803573
【28】 Mohammad K. Nazeeruddin, Peter Pe´chy, Thierry Renouard, Shaik M. Zakeeruddin,Robin Humphry-Baker, Pascal Comte, Paul Liska, Le Cevey, Emiliana Costa,Valery Shklover, Leone Spiccia, Glen B. Deacon, Carlo A.Bignozzi, Michael Gra1tzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613-1624
【29】 郭建育,「含聯噻吩的輔助配位基之釕金屬錯合物的合成與其在染料敏化太陽能電池上的應用」,國立中央大學,碩士論文,2019。
【30】 陳佑軒,「合成應用於染料敏化太陽能電池之藍色有機染料」,國立中央大學,碩士論文,2018。
【31】 陳映維,「尋找染料敏化太陽能電池之藍色染料」,國立中央大學,碩士論文,2016。
【32】 Zhen Li, Chuanxiao Xiao, Ye Yang, Steven P. Harvey, Dong Hoe Kim, Jeffrey A. Christians, Mengjin Yang, Philip Schulz, Sanjini U. Nanayakkara, Chun-Sheng Jiang, Joseph M. Luther, Joseph J. Berry, Matthew C. Beard, Mowafak M. Al-Jassim and Kai Zhu, “Extrinsic ion migration in perovskite solar cells”, Energy Environ. Sci., 2017, 10, 1234-1242