| 研究生: |
李向曦 Hsiang-hsi Lee |
|---|---|
| 論文名稱: |
奈米碳管對於硝基酚與銅之競爭吸附 Competitive adsorption of nitrophenol and copper(II)from aqueous solutions on mult-walled carbon nanotubes |
| 指導教授: |
秦靜如
Ching-Ju Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | Polanyi model 、Langmuir model 、競爭吸附 |
| 外文關鍵詞: | competitive adsorption, Polanyi model, Langmuir model |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用奈米碳管吸附鄰-硝基苯酚(2-NP)、對-硝基苯酚(4-NP)及銅離子(Cu2+),探討其競爭吸附及機制。研究結果顯示,經硝酸氧化處理後,比表面積與氧化前差異不大,但在碳管表面引入官能基-COOH,使得碳管表面電荷有所改變,造成對2-NP、4-NP及Cu2+的吸附影響。等溫吸附實驗顯示,碳管的含氧官能基多寡會影響2-NP、4-NP及Cu2+之吸附量,未經氧化奈米碳管吸附2-NP及4-NP之吸附量會優於氧化後奈米碳管,和空間障礙及水簇作用有關。而氧化後奈米碳管對吸附Cu2+之吸附量會大於未氧化碳管,會因官能基的增加提高碳管表面負電荷,導致吸附量提高。2-NP與4-NP因電子分佈之影響,氧化前後奈米碳管對4-NP的吸附能力較2-NP低;不論酸氧化前後奈米碳管,對於2-NP及Cu2+之吸附皆較為符合Langmuir模式,而對於4-NP之吸附則較為符合polanyi 模式。經熱力學分析得知酸氧化前後奈米碳管吸附2-NP及4-NP均為放熱反應;而酸氧化前後奈米碳管吸附Cu2+為吸熱反應。在不同pH值下,酸氧化後奈米碳管吸附2-NP及4-NP之吸附量具有相同的趨勢,與分子解離及表面電荷有關;吸附Cu2+則與表面電荷及沉澱有關。在2-NP及4-NP存在下之競爭結果顯示,碳管吸附Cu2+之吸附量增加,因2-NP及4-NP解離後將可能與Cu2+形成新物質或錯合物,提高Cu2+之吸附百分比;但在pH值小於7時,Cu2+將對氧化後奈米碳管吸附2-NP及4-NP產生抑制作用,與水合作用產生遮蔽效應有關。
Adsorption of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and copper (Cu2+) by multi-walled carbon nanotubes (MWCNTs) with and without oxidation by nitric acid were investigated in this study. The adsorption capacities of 2-NP and 4-NP by A-MWCNT were larger than H-MWCNT, because of steric obstructions and water clustering. On the other hand, H-MWCNT had better adsorption capacity of Cu2+ than A-MWCNT, because the functional groups generated more negatively charged surface. Furthermore, MWCNTs had better adsorption capacity of 2-NP than 4-NP due to the electronic distribution. The adsorption of 2-NP and 4-NP by MWCNTs were endothermic while the adsorption of Cu2+ was exothermic. The enthalpy change and free energy change suggested that the adsorption of 2-NP, 4-NP, and Cu2+ onto MWCNTs were physisorptions. The adsorption at different pH values showed that the adsorption of 2-NP and 4-NP by H-MWCNT had the same trend, relating to the molecular dissociation and surface charge, while the adsorption of Cu2+ was affected by the surface charge and precipitation. When 2-NP or 4-NP were present, the adsorption of Cu2+ was promoted, because complexes of 2-NP/Cu and 4-NP/Cu may form after 2- and 4-NP dissociated. When pH values were lower than 7, the adsorption of 2-NP and 4-NP would be inhibited by Cu2+ due to the shielding from hydration of Cu2+.
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56-58 (1991).
[2] M. Paradise and T. Goswami, “Carbon nanotubes-Production and industrial applications”, Materials and design, 28, 1477-1489 (2007).
[3] M. Trojanowicz, “Analytical applications of carbon nanotubes: a review”, TrAC trends in analytical chemistry, 25, 480-489 (2006).
[4] C. J. M. Chin, L. C. Shih, H. J. Tsai, and T. K. Liu, “Adsorption of o-xylene and p-xylene from water by SWCNTs”, Carbon, 45, 1254-1260 (2007).
[5] G. P. Rao, C. Lu, and F. Su, “Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review”, Separation and Purification Technology, 58, 224-231 (2007).
[6] B. Pan and B. Xing, “Adsorption mechanisms of organic chemicals on carbon nanotubes”, Environmental Science and Technology, 42, 9005-9013 (2008).
[7] J. Li, S. Chen, G. Sheng, J. Hu, X. Tan, and X. Wang, “Effect of surfactants on Pb (II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes”, Chemical Engineering Journal, 166, 551-558 (2011).
[8] 申昌生化科技 CBT Nano-scale Supplier carbon nanotube
http://www.cbt.com.tw/0300.html
[9] 洪昭南,徐逸明,王宏達,「奈米碳管結構及特性簡介」,化工,49, 23-32 (2002)。
[10] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature, 382, 54-56 (1996).
[11] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, 391, 62-64 (1998).
[12] W. Yi, L. Lu, Z. Dian-Lin, ZW. Pan, and SS. Xie, “Linear specific heat of carbon nanotubes”, Physical Review B, 59, 9015-9018 (1999).
[13] M. F. Lin, “Optical spectra of single-wall carbon nanotube bundles”, Physical Review B, 62, 13153 (2000).
[14] 曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」,國立成功大學化學工程學系碩博士班畢業論文,2009。
[15] T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, “purification of nanotubes”, Nature, 367, 519-519 (1994).
[16] J. A. Lu, J. R. Mullen, S. J. Brill, S. Kleff, A. M. Romeo, and R. Sternglanz, “purifying single-walled nanotubes”, Nature, 383, 679 (1996).
[17] J. M. Bonard, T. Stora, J. P. Salvetat, F. Maier, T. Stockli, C. Duschl, L. Forro, W. A. Deheer, and A. Chatelain, “Purification and size-selection of carbon nanotubes”, Advanced Materials, 9, 827-831 (1997).
[18] X. Xie, Y. Mai, and X. Zhou, “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”, Materials Science and Engineering: R: Reports, 49, 89-112 (2005).
[19] J. J. Wang, G. P. Yin, J. Zhang, Z. B. Wang, and Y. Z. Gao, “High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell”, Electrochimica Acta, 52, 7042-7050 (2007).
[20] 杜玉琴,「鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附」,
碩士論文,國立中央大學環境工程研究所,中壢,2011。
[21] 周貝倫,「純化程序對奈米碳管表面特性影響之研究」,碩士論文,
國立中央大學環境工程研究所,中壢,2006。
[22] I. D. Rosca, F. Watari, M. Uo, and T. Akasaka, “Oxidation of multiwalled carbon nanotubes by nitric acid”, Carbon, 43, 3124-3131 (2005).
[23] 余翊菱,「以多壁奈米碳管吸附水中雙酚A之特性研究」,碩士論
文,國立中央大學環境工程研究所,中壢,2010。
[24] M. Lebron-Colon, M. A. Meador, D. Lukco, F. Sola, J. Santos-Perez, and L. S. McCorkle, “Surface oxidation study of single wall carbon nanotubes”, Nanotechnology, 22, 1-5 (2011).
[25] 吳錦昆,「氧化鋁吸附地下水中砷之研究」,碩士論文,
國立成功大學環境工程學系,台南市,1999。
[26] 邱誌忠,「半導體產業高濃度含砷廢水之處理-化學沉降法與活性炭吸附法之評估」,碩士論文,國立中興大學環境工程學系,台中市,2004。
[27] M. Vadi, “Adsorption isotherms of celebrex as non-steroidal anti-inflammation on single-walled carbon nanotubes”, International Journal of Physical Sciences, 7, 1215-1218 (2012).
[28] T. Santhi, S. Manonmani, and T. Smitha, “Kinetics And Isotherm Studies On Cationic Dyes Adsorption Onto Annona Squmosa Seed Activated Carbon”, International Journal of Physical Sciences, 2, 287-295(2010).
[29] O. Moradi, K. Zare, M. Monajjemi, M. Yari, and H. Aghaie, “The studies of equilibrium and thermodynamic adsorption of Pb (II), Cd (II) and Cu (II) ions from aqueous solution onto SWCNTs and SWCNT–COOH surfaces”, Fullerenes, Nanotubes, and Carbon Nanostructures, 18, 285-302 (2010).
[30] D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, “Analytical
chemistry”, 2001.
[31] C. Lu and C. Liu, “Removal of nickel (II) from aqueous solution by carbon nanotubes”, Journal of Chemical Technology and Biotechnology, 81, 1932-1940 (2006).
[32] C. Lu, H. Chiu, and C. Liu, “Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies”, Industrial and engineering chemistry research, 45, 2850-2855 (2006).
[33] Z. Wang,C. Liu, Z. Liu, H. Xiang, Z. Li, and Q. Gong, “π-π Interaction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites”, Chemical physics letters, 407, 35-39, (2005).
[34] S. Gotovac, H. Honda, Y. Hattori, K. Takahashi, H. Kanoh, and K. Kaneko, “Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons”, Nano letters, 7, 583-587 (2007).
[35] D. Lin and B. Xing, “Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups”, Environmental Science and Technology, 42, 7254-7259 (2008).
[36] X. E. Shen, X. Q. Shan, D. M. Dong, X. Y. Hua, and G. Owens, “Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes”, Journal of Colloid and Interface Science, 330, 1-8 (2009).
[37] K. Pyrzynska and A. Stafiej, “Sorption behavior of Cu(II), Pb(II), and Zn(II) onto carbon nanotubes”, Solvent Extraction and Ion Exchange, 30, 41-53, (2012).
[38] R. Arasteh, M. Masoumi, AM. Rashidi, L. Moradi, V. Samimi, ST. Mostafavi, “Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions”, Applied Surface Science, 256, 4447-4455 (2010).
[39] K. Yang and B. Xing, “Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application”, Chemical reviews, 110, 5989-6008 (2010).
[40] Y. H. Li, J. Ding, Z. K. Luan, Z. C. Di, Y. F. Zhu, C. L. Xu, D. H. Wu, and B. Q. Wei, “Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes”, Carbon, 41, 2787-2792 (2003).
[41] G. Sheng, J. Li, D. Shao, J. Hu, C. Chen, Y. Chen, and X. Wang, “Adsorption of copper (II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids”, Journal of Hazardous Materials, 178, 333-340 (2010).
[42] G. C. Chen, X. G. Shan, Z. G. Pei, H. Wang, L. R. Zheng, J. Zhang, and Y. N. Xie, “Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead”, Journal of Hazardous Materials, 188, 156-163 (2011).
[43] B. Pan and B. Xing, “Competitive and complementary adsorption of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials”, Journal of agricultural and food chemistry, 58, 8338-8343 (2010).
[44] 工業局工業污染防治技術計畫專案書,經濟部,2003。
[45] C. D. Miranda and R. Rojas, “Copper accumulation by bacteria and transfer to scallop larvae”, Marine pollution bulletin, 52, 293-300 (2006).
[46] Hazardous Substances Data Bank(HSDB), Last Modified May 15 2012
[47] V. L. Gemini, A. Gallego, V. M. de Oliveira, C. E. Gomez, G. P. Manfio, and S. E. Korol, “Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis”, International biodeterioration and biodegradation, 55, 103-108 (2005).
[48] M. L. Richardson and S. Gangolli, “The dictionary of substances and their effects”, The Royal Society of Chemistry, Cambridge. 1994.
[49] 勞工安全衛生研究所,物質安全資料表。
[50] L. Keith and W. Telliard, “ES&T special report: priority pollutants: Ia perspective view”, Environmental Science and Technology, 13, 416-423 (1979).
[51] M. A. Salam and R.C. Burk, “Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multi-walled carbon nanotubes”, Applied Surface Science, 255, 1975-1981 (2008).
[52] A. P. Terzyk, “Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption”, Journal of Colloid and Interface Science, 268, 301-329 (2003).
[53] P. C. Hiemenz and R. Rajagopalan, “Principles of colloid and surface chemistry”, 3rd ed, Marcel Dekker,Inc. ,New York, 405-407, 411-412 (1997).
[54] Y. Yu, Y. Y. Zhuang, Z. H. Wang, and M. Q. Qiu, “Adsorption of water-soluble dyes onto modified resin”, Chemosphere, 54, 425-430 (2004).
[55] J. W. Shim, S. J. Park, and S. K. Ryu, “Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers”, Carbon, 39, 1635-1642 (2001).
[56] Y. H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, and Y. Zhu, “Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes”, Water research, 39, 605-609 (2005).
[57] G. C. Chen, X. Q. Shan, Y. S. Wang, B. Wen, Z. G. Pei, Y. N. Xie, T. Liu, and J. J. Pignatello, “Adsorption of 2, 4, 6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II)”, Water research, 43, 2409-2418 (2009).
[58] J. Y. Chen, D. Q. Zhu, and C. Sun, “Effect of heavy metals on the sorption
of hydrophobic organic compounds to wood charcoal”, Environmental
Science and Technology, 41, 2536-2541 (2007).