跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高詣涵
Yi-Han Kao
論文名稱: 含三價釤硝酸鹽及氧化物高激發態放光行為之研究
指導教授: 張伯琛
Bor-Chen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 光譜學三價釤藍位移訊號光致放光光譜
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用光致放光光譜(photoluminescence)、激發光譜(excitation)及時間解析(time-resolved)光譜對含三價釤(Sm3+)之氧化物(Sm2O3)及硝酸鹽水合物(Sm(NO3)3.6H2O)之激發態放光行為進行探討。以561 nm光源激發時於Sm(NO3)3.6H2O中觀測到在533 nm的藍位移(blue shift)訊號,此藍位移訊號主要來自Sm3+本身能階4F3/2,也可能包含部分更高能階4G7/2的放光,透過光功率依賴(power dependence)及溫度相依(temperature dependence)實驗得知藍位移訊號產生機制為一單光子熱譜帶躍遷(one-photon hot band transition)。比較與Sm3+大小相近、能階相似的Eu3+之同類型化合物,發現它們具有類似的高激發態放光行為,在硝酸鹽水合物都有放光生命期相近且具有較強的放光,但氧化物則沒有或僅有微弱的放光強度。此外,在這兩類含Eu3+或Sm3+的化合物中還觀測到兩種交互遲緩(cross relaxation)機制,
    一為存在於氧化物中配位中心間的交互遲緩,另一為在硝酸鹽水合物中高激發態與結晶水的振動偶合,加快其緩解至第一激發態的過程。而Eu3+或Sm3+的化合物之交互遲緩機制效率差異,導致高激發態具有不同的放射行為及緩解至下能階的速率。


    Photoluminescence, excitation, and time-resolved spectra were recorded for studying the highly excited state emission behaviors of the oxide (Sm2O3) and nitrate (Sm(NO3)3·6H2O) containing trivalent samarium (Sm3+). A blue-shift emission was observed at 533 nm of the emission spectrum of Sm(NO3)3·6H2O at 561 nm excitation. Based upon the power dependence and temperature dependence measurements, this blue-shift emission originated from the 4F3/2 state or the higher 4G7/2 state and resulted from a one-photon hot band transition. Since Sm3+ and Eu3+ have similar energy levels and atomic radii, their corresponding compounds have similar highly excited state emission behaviors. Their nitrates have strong highly excited state emission with similar emission lifetimes, but their oxides have weak or no highly excited state emission. In these compounds, in addition to the cross relaxation between coordination centers, we found the energy relaxation from the highly excited state could couple with the crystalline water vibration. Due to the much stronger vibrational coupling, the energy relaxation from the highly excited state in Sm3+ has been much faster than that in Eu3+.

    目錄 中文摘要 I 英文摘要 II 謝誌 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 鑭系元素及稀土元素 1 1-2 鑭系元素放光原理 2 1-3 釤離子發光原理 4 1-4 鑭系元素之光學材料 5 1-5 研究動機 6 第二章 實驗 8 2-1 實驗目標 8 2-2 實驗藥品 8 2-3 光學元件 9 2-3-1 光源(Light Source) 9 2-3-2 單光儀(Monochromator) 11 2-3-3 偵測器(Detector) 11 2-3-4 示波器(Oscilloscope) 14 2-3-5 時間控制器(Delay Generator) 15 2-4 光譜學技術及儀器架設 15 2-4-1 激發光譜(Excitation Spectra) 15 2-4-2 光致放光光譜(Photoluminescence Spectra) 17 2-4-3 溫度相依實驗(Temperature Spectra) 19 2-4-4 時間解析光譜(Time-Resolved Spectra) 20 第三章 結果與討論 22 3-1 含三價釤化合物 22 3-2 晶體結構 22 3-3 光致放光光譜 24 3-4 以561 nm光源激發Sm3+化合物之藍位移光譜 25 3-5 激發光譜 26 3-6 不同光源激發之差異光譜 27 3-7 561 nm激發Sm3+之藍位移訊號產生機制 29 3-8 Sm3+之4F3/2放光衰退曲線 32 3-9 不同光源之Sm3+放光上升曲線 34 3-10 Sm3+之4G5/2放光衰退曲線 35 3-11 Eu3+與Sm3+藍位移光譜 38 3-12 Eu3+及Sm3+之高激發態放光衰退曲線 39 3-13 Eu3+與Sm3+高激發態之比較 40 3-14 Eu3+與Sm3+高激發態能量轉移機制之比較 42 第四章 結論 47 參考文獻 49

    1. Balaram, V. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geoscience Frontiers 2019, 10, 1285-1303.
    2. Iglesias-Émbil, M.; Valero, A.; Ortego, A.; Villacampa, M.; Vilaró, J.; Villalba, G. Raw Material Use in a Battery Electric Car - A Thermodynamic Rarity Assessment. Resources, Conservation and Recycling 2020, 158, 104820.
    3. Templeton, D.; Dauben, C. H. Lattice Parameters of Some Rare Earth Compounds and a Set of Crystal Radii. Journal of the American Chemical Society 1954, 76, 5237-5239.
    4. Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. A Systematic Analysis of the Spectra of the Lanthanides Doped into Single Crystal LaF3. The Journal of Chemical Physics 1989, 90, 3443-3457.
    5. Tanko, Y. A.; Sahar, M. R.; Ghoshal, S. K. Prominent Spectral Features of Sm3+ Ion in Disordered Zinc Tellurite Glass. Results in Physics 2016, 6, 7-11.
    6. Li, Y.-C.; Chang, Y.-H.; Lin, Y.-F.; Chang, Y.-S.; Lin, Y.-J. Synthesis and Luminescent Properties of Ln3+ (Eu3+, Sm3+, Dy3+)-Doped Lanthanum Aluminum Germanate LaAlGe2O7 Phosphors. Journal of Alloys and Compounds 2007, 439, 367-375.
    7. Dorn, K. V.; Blaschkowski, B.; Netzsch, P.; Hoppe, H. A.; Hartenbach, I. Blue Excitement: The Lanthanide(III) Chloride Oxidomolybdates(VI) Ln3Cl3[MoO6] (Ln = La, Pr, and Nd) and Their Spectroscopic Properties. Inorganic Chemistry 2019, 58, 8308-8315.
    8. Im, W. B.; Fellows, N. N.; DenBaars, S. P.; Seshadri, R.; Kim, Y.-I. LaSr2AlO5, a Versatile Host Compound for Ce3+-Based Yellow Phosphors: Structural Tuning of Optical Properties and Use in Solid-State White Lighting. Chemistry of Materials 2009, 21, 2957-2966.
    9. Evans, R. C.; Carlos, L. D.; Douglas, P.; Rocha, J. Tuning the Emission Colour in Mixed Lanthanide Microporous Silicates: Energy Transfer, Composition and Chromaticity. Journal of Materials Chemistry 2008, 18, 1100-1107.
    10. 洪士翔,含三價釤配位聚合物內特有淬熄過程之研究,國立中央大學化學系碩士論文(2019)
    11. Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J. Novel Microporous Lanthanide Silicates with Tobermorite-Like Structure. Journal of The American Chemical Society 2003, 125, 14573-14579.
    12. 王郁婷,不同激發態三價銪化合物放射光譜及放射時間曲線之研究,國立中央大學化學系碩士論文(2020)
    13.資料來源:https://www.hamamatsu.com/resources/pdf/etd/Xe-HgXe_TLS1016E.pdf
    14. 資料來源:http://pdfstream.manualsonline.com/e/e3f2001a-7fa9-429c-a6b3-f651993e2cc8.pdf
    15. 資料來源:http://www.pi-j.jp/pdf/manual/SP-300i%20Manual.pdf
    16. 資料來源:https://www.hamamatsu.com/resources/pdf/etd/R63610_TPMS1016E.pdf
    17. 資料來源:https://andor.oxinst.com/learning/view/article/intensified-ccd-cameras
    18. 資料來源:https://andor.oxinst.com/assets/uploads/products/andor/
    documents/andor-istar-ccd-spectroscopy-specifications.pdf
    19. Kumar, S.; Prakash, R.; Singh, V. Synthesis, Characterization, and Applications of Europium Oxide: A Review. Reviews in Advanced Sciences and Engineering 2015, 4, 247-257.
    20. Barad, C.; Kimmel, G.; Hayun, H.; Shamir, D.; Hirshberg, K.; Gelbstein, Y. Phase Stability of Nanocrystalline Grains of Rare-Earth Oxides (Sm2O3 and Eu2O3) Confined in Magnesia (MgO) Matrix. Materials 2020, 13, 2201.
    21. 資料來源:https://materialsproject.org/
    22. Kumar, N.; Sandi, G.; Kaminski, M.; Bobadilla, A.; Mertz, C.; Seminario, J. M. Electron Transport in Graphene-Based Nanosensors for Eu(III) Detection. The Journal of Physical Chemistry C 2015, 119, 12037-12046.
    23. Stoscup, J. A.; Staples, R. J.; Biros, S. M. Crystal Structure of A Samarium (III) Nitrate Chain Cross-Linked by A Bis-Carbamoylmethylphosphine Oxide Ligand. Acta Crystallographica Section E 2014, 70, 188-191.
    24. Faucher, M. D.; Tanner, P. A. Energy Levels and Hypersensitivity of Samarium(III) in the Elpasolite Cs2NaSmCl6. Journal of Physics: Condensed Matter, 2006, 18, 8503-8522.
    25. Chen, X.; Jensen, M.; Liu, G. Analysis of Energy Level Structure and Excited-State Dynamics in a Sm3+ Complex with Soft-Donor Ligands: Sm(Et2Dtc)3(bipy). The Journal of Physical Chemistry B 2005, 109, 13991-13999.
    26. Silver, J.; Martinez-Rubio, M.; Ireland, T.; Withnall, R. Yttrium Oxide Upconverting Phosphors. Part 2: Temperature Dependent Upconversion Luminescence Properties of Erbium in Yttrium Oxide. The Journal of Physical Chemistry B 2001, 105, 7200-7204.
    27. Ilmi, R.; Kansız, S.; Al-Rasbi, N. K.; Dege, N.; Raithby, P. R.; Khan, M. S. Towards White Light Emission from a Hybrid Thin Film of a Self-Assembled Ternary Samarium (III) Complex. New Journal of Chemistry 2020, 44, 5673-5683.
    28. Dexter, D. L.; Schulman, J. H. Theory of Concentration Quenching in Inorganic Phosphors. The Journal of Chemical Physics 1954, 22, 1063-1070.
    29. Mohan, S.; Kaur, S.; Singh, D. P.; Kaur, P. Structural and Luminescence Properties of Samarium Doped Lead Alumino Borate Glasses. Optical Materials 2017, 73, 223-233.
    30. 資料來源:https://spectrabase.com/
    31. Melnikov, P.; Arkhangelsky, I.; Nascimento, V.; Silva, A.; Consolo, L. Z. Thermolysis Mechanism of Samarium Nitrate Hexahydrate. Journal of Thermal Analysis and Calorimetry 2014, 118, 1537-1541.

    QR CODE
    :::