| 研究生: |
王哲安 Jer-An Wang |
|---|---|
| 論文名稱: |
色散光子晶體能隙之研究 |
| 指導教授: |
欒丕綱
Pi-Gang Luan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 色散 、光子晶體 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用平面波展開法 (plane wave expansion) 模擬電磁波在色散性介質的光子晶體的能帶結構 (band structure) 圖,我們所採用的是Drude model形式的色散性介質電係數 (permittivity)。本研究主要探討電磁波在二維色散介質柱所組成之光子晶體的能帶結構圖。從能帶結構圖中可以發現全方位光子能隙 (full photonic band gap),也就是在任何情況下特定電磁波頻率均無法進入此介質的頻段。我們藉由更改色散介質柱子的截面形狀、填充率的變化、柱子不同排列方式、柱子的旋轉角度與交換柱子內外的介質來觀察全方位光子能隙的變化,並作比較。
In this thesis we use plane wave expansion (PWE) method to compute the band structures of two dimensional dispersive photonic crystals (DPCs) consisting of periodically arranged cylinders whose permittivity has the Drude model type dispersion. My research is mainly about computing the full photonic band gap, that is, the frequency ranges that the incident light cannot penetrate through. We compare the computation results of different DPCs consisting of cylinders with different cross sections and different positioning, and study the influences to the full band gaps by changing the filling factor, altering the rotation angle of the cylinders, and exchanging the media inside and outside the cylinders.
[1] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[3] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals—Molding the Flow of Light, Princeton University Press, 1995.
[4]W.Jones, N. H.March, Theoretical Solif State Physics, Wiley-Interscience New York, 1973.
[5] C. Kittel, Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, USA, 2005.
[6] S.Kushwaha and P. Halevi, ”Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders”,Appl. Phys. Lett. 69,31 (1996).
[7] J. D. Jackson, Classical electrodynamics. 3rd Ed, John Wiley & Sons, New York, 1999.
[8] Young-Chung Hsue and Tzong-Jer Yang,” Contour of the attenuated length of an evanescent wave at constant frequency within a band gap of photonic crystal”, Solid State Communications 129 475–478 (2004)
[9] David J. Griffiths, “Introduction to Electrodynamics” , third edition, pp.398-404.
[10] David K. Cheng, “Field and Wave Electromagnetics” , second edition, pp.373-374.
[11] 邱國斌、蔡定平,金屬表面電漿簡介,物理雙月刊(廿八卷二期)2006 年4 月. 472.
[12] Kurt E. Oughstun and Natalie A. Cartwright, On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion Optical, Society of America 2003
[13] Kazuaki Sakoda, Noriko Kawai, and Takunori Ito, Photonic bands of metallic systems. I. Principle of calculation and accuracy, PHYSICAL REVIEW B, VOLUME 64, 045116
[14] Takunori Ito and Kazuaki Sakoda,Photonic bands of metallic systems. II. Features of surface plasmon polaritons, PHYSICAL REVIEW B, VOLUME 64, 045117
[15] Hai-Feng Zhang, Shao-BinLiu, Xiang-KunKong, Bo-RuiBian , Ya-NanGuo, Dispersion properties of two-dimensional plasma photonic crystals with periodically external magnetic field, Solid State Communications 152 (2012) 1221–1229
[16] Hai-feng Zhang, Shao-bin Liu, Xiang-kun Kong, Liang Zhou, Chun-zao Li, Comment on “Photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic waves”, J. Appl. Phys. 110, 026104 (2011)