| 研究生: |
游騰瑞 Teng-Ruei You |
|---|---|
| 論文名稱: |
加勁土堤受震反應分析 Seismic Response Analysis of Reinforced Embankment |
| 指導教授: | 黃俊鴻 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 332 |
| 中文關鍵詞: | 加勁土堤 、動態分析 、參數分析 、漸進式破壞 、永久位移 |
| 外文關鍵詞: | reinforced embankment, dynamic analysis, parameter analysis, progressive failure, permanent displacement |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來加勁擋土結構物受到廣泛使用,具有施工快速、低造價與耐震性佳等
優點,已逐漸取代傳統重力式擋土牆。經由多年來完工案例的驗證下,傳統加勁
設計方法未經修正而顯得過於保守,詳細了解其力學機制與受震反應有助於使設
計方法更為精進,因此本研究以數值方法詳細探討加勁土堤靜、動態之力學行為,
並進行參數分析以了解影響加勁土堤受震行為之要素。
本研究以二維有限差分法分析程式FLAC2D(Fast Lagrangian Analysis of
Continua)建立數值分析模型,探討土壤元素組成律與分層堆疊於加勁土堤靜態
分析時之差異,進而考慮不同加勁材料之應力應變行為,加勁材料嵌固模式與滑
動模式對動態行為之影響,以釐清各項因素影響程度之大小。本研究以FLAC2D
內建之Fish 語言建立自動建模之模組,可考慮不同加勁土堤參數,包含坡度、
高度、加勁間距與長度等因素,快速建立數值分析模型進行動態分析,得到各項
參數分析之結果,以進行數據分析與比較,進而歸納結果。動態分析時考慮4
筆不同地震規模之加速度歷時,調整最大加速度值進行分析,探討加勁土堤受震
過程之變形行為,以了解土堤受震之變形機制。
傳統加勁路堤之設計方法均以極限平衡法為基礎,本研究以極限平衡分析法
計算加勁土堤圓弧破壞模式與雙楔形破壞模式之降伏加速度,以Newmark 滑動
塊體法計算加勁土堤之永久位移,與本研究有限差分之分析結果進行比較,最終
將分析之永久位移建立經驗關係式,提供簡易計算之用。
研究結果顯示,加勁材料嵌固模式與滑動模式對土堤之變形影響不大,僅影
響加勁材料之軸力分布,動態分析過程顯示,加勁土堤之變形屬於漸進式破壞,
其潛在破壞面隨著不同受震程度而有所不同,與極限平衡法存在很大的差異,其
受震變形等級受到許多因素影響,為極限平衡法無法模擬的部分,突顯數值分析
模型在加勁路堤耐震性能設計之重要性。
It’s important to understand the deformation mechanism of reinforced
embankment during seismic excitation. At the first, this study used FLAC2D to
investigate the influences of filling process and constitutive relations on the results of
pre-earthquake static analysis. Furthermore, the effects of slip conditions of the
interface between soil and reinforced material, and the stress-strain relation of
reinforced material are also explored. The auto-mesh program has been developed
using Fish subroutine of FLA2D for performing the sensitivity study of different
parameters on the dynamic results. The investigated parameters included the slope
angle and height, the length and spacing of the reinforced material. Based on the
dynamic analysis, the progressive deformation and failure process are clearly
observed and recorded.
The traditional design of reinforced embankment is based on the limit
equilibrium method (LEM). This study used LEM to calculate the yield acceleration
of the reinforced embankment by assuming the circular and two-wedge failure
surfaces. The permanent deformation is then computed by Newmark sliding block
method (NSBM). It is found that the permanent deformation calculated by FLAC2D
is significantly larger than that based on LEM and NBSM. Therefore, a more accurate
simplified method was established for estimating the permanent deformation of
reinforced embankment which is based on the analyzed results from FLAC2D.
1. Adukari, G.S.N., and Parkin, A.K., “Deformation behavior of Talbingo dam”,
International Journal for Numerical and Analytical Methods in Geomechanics,
Vol. 6, pp. 353-382 (1982).
2. Allen, T.M., Christopher, B.R. and Hotzl, R.D., “Performance of a 12.6 m High
Geotextile Wall in Seattle, Washington”, Geosynthetic Retaining Walls, Wu,
J.T.H., Editor, Balkema, Proceedings of a symposium held in Denver, Colorado,
USA, August 1991, pp. 81-100 (1992).
3. Allen, T.M., Bathurst, R.J., and Berg, R.R., “Global level of safety and
performance of geosynthctic walls : An historical perspective.” Geosynthetic
International, Vol. 9, No. 5-6, pp. 395-450 (2002).
4. ASTM D4595, “Standard Test Method for Tensile Properties of Geotextiles by the
Wide-Width Strip Method”, American Society for Testing and Materials, West
Conshocken, Pennsylvania, USA.
5. Allen T. M., Bathurst R. J., Holtz R. D., Lee W. F. and Walters D., “New method
for prediction of loads in steel reinforced soil walls.” Journal of Geotechnical and
Geoenviromental Engineering, Vol. 130, No. 11, pp. 1109-1120 (2004).
6. Bathurst, R.J. and Cai, Z., “Pseudo-static seismic analysis of
geosynthetic-reinforced segmental retaining walls”, Geosynthetics International,
Vol.2, No.5, pp.787-830 (1995).
7. Bathurst, R.J., Cai, Z., Alfaro, M. and Pelletier, M., “Seismic design issues for
geosynthetic reinforced segmental retaining walls”, Mechanically Stabilized
Backfill, Wu(ed.), pp.79-97 (1997).
292
8. Bathurst, R.J., Simac, M. R., “Design and performance of the facing column for
geosynthetic reinforced segmental retaining walls”, Mechanically Stabilized
Backfill, Wu(ed.), pp.193-208 (1997).
9. Bathurst, R. J., Allen, T. M., and Walters, D. L. “Reinforcement loads in
geosynthetic walls and the case for a new working stress design method.”
Geotextiles and Geomembranes, 23(4), 287–322 (2005).
10. Bathurst, R. J., Nernheim, A., Walters, D. L., Allen, T. M., Burgess, P., and
Saunders, D., “Influence of reinforcement stiffness and compaction on the
performance of four geosynthetic reinforced soil walls.” Geosynthetics
International, 16(1), 43–59 (2009).
11. Bathurst, R. J., Miyata, Y., Nernheim, A., and Allen, T., “Refinement of
K-stiffness method for geosynthetic reinforced soil walls.” Geosynthetics
International, 15(4), 269–295 (2008).
12. Bathurst R. J., Nernheim A. and Allen T. M., “Predicted loads in steel reinforced
soil walls using the AASHTO simplified method.” Journal of Geotechnical and
Geoenviromental Engineering, Vol. 135, No. 2, pp. 177-184 (2009).
13. Bell, J.R., Barrett, R.K., and Ruckman, A.C., “Geotextile Earth-Reinforced
Retaining Wall tests: Glenwood Canyon, Colorado,” Transportation Research
Record 916, pp. 59-69 (1983).
14. Bonaparte, R., Holtz, R.D., and Giroud, J.P., “Soil Reinforcement Design Using
Geotextiles and Geogrids”, Geotextile Testing and the Desing Engineer, ASTM
STP 952, J. E. Fluet, Jr., Ed., American Society for Testing and Materials,
Philadelphia, pp. 69-116 (1987).
15. Bowles, J.E., “Foundation Analysis and Design”. 4ed. McGraw-Hill, Inc (1988).
293
16. Bergado D.T., Chai J.C. and Balasubramanism A.S., “Interaction between grid
reinforcement and cohesive-frictional Soil”, Proceedings of the International
Symposium on Earth Reinforcement Practice, Kyushu University, Fukuoka, Japan,
pp. 29-34 (1992).
17. Boyle, S.R., Gallagher, M. and Holtz, R.D., “Influence of Strain Rate, Specimen
Length and Confinement on Measured Geotextile Properties”, Geosynthetics
International, Vol. 3, No. 2, pp. 205-225 (1996).
18. Boyle, S.R., “Deformation Prediction of Geosynthetic Reinforced Soil Retaining
Walls”, Ph.D. Dissertation, Department of Civil Engineering, University of
Washington, Seattle, Washington, USA, 391p (1995a).
19. Boyle, S.R., “Unit Cell Tests on Reinforced Cohesionless Soils”, Proceedings of
Geosynthetics ’95, IFAI, Vol. 3, Nashville, Tennessee, USA, February 1995, pp.
1221-1234 (1995b).
20. Boyle, S.R. and Holtz, R.D., “Deformation Characteristics of Geosynthetic
Reinforced Soil ”, Proceedings of the Fifth International Conference on
Geotextiles, Geomembranes and Related Products, Vol. 1, Singapore, September
1994, pp. 361-364 (1994).
21. Boyle S.R., Gallagher M. and Holtz R. D., “Influence of strain rate, specimen
length and confinement on measured geotextile properties.” Geosynthetic
International, Vol. 3, No. 2, pp. 205-225 (1996).
22. Cai, Z. and Bathurst, R.J., “Seismic response analysis of geosynthetic reinforced
soil segmental retaining walls by finite element method”, Computers and
Geotechnics, Vol.17, No.4, pp.523-546 (1995).
294
23. Cai, Z. and Bathurst, R.J., “Seismic-induced permanent displacement of
geosynthetic-reinforced segmental retaining walls”,Can.Geotech. J. Vol.33,
pp.937-955 (1996a).
24. Cai, Z. and Bathurst, R.J., “Deterministic sliding block methods for estimating
seismic displacements of earth structures”, Soil Dynamics and Earthquake
Engineering, Vol.15, pp.255-268 (1996b).
25. Hatami, K., and Bathurst, R. J., “Development and verification of a numerical
model for the analysis of geosynthetic reinforced soil segmental walls under
working stress conditions.” Can. Geotech. J., 42(4), 1066–1085 (2005).
26. Hatami, K., and Bathurst, R. J., “A numerical model for reinforced soil segmental
walls under surcharge loading.” Journal of Geotechnical and Geoenviromental
Engineering, 132(6), 673–684 (2006).
27. Huang B., Bathurst R. J. and Hatami K., “Numerical study of reinforced soil
segmental walls using three different constitutive soil models.” Journal of
Geotechnical and Geoenviromental Engineering, Vol. 135, No. 10, pp. 1486-1498
(2009).
28. Howard, R. W. A., DeGeorge, J. P., and Kutter, B. L., “Dynamic centrifuge
testing of reinforced soil walls—centrifuge data report for MSE01.” Rep. No.
UCD/CGMDR-97/11, Center for Geotechnical Modeling (1997).
29. Howard, R. W. A., Kutter, B. L., and Siddharthan, R., “Seismic deformation of
reinforced soil centrifuge models.” Proc., Geotechnical Earthquake Engineering
and Soil Dynamics Conf., ASCE, Reston, Va., 446–468 (1998).
30. Helwany, M. B., Tasuoka, F., Tateyama, M., and Kojima, K., ”Effects of facing
295
rigidity on the performance of geosynthetic-reinforced soil retaining walls”, Soils
and Foundations, Vol. 36, No. 1, pp.27-38 (1996).
31. Huang, C. C., “Investigations of soil retaining structures damagedduring the
Chi-Chi(Taiwan) earthquake”, Journal of the Chinese Instituteof Engineers, Vol.
23,No. 4, pp.417-428 (2000).
32. Huang, C. C., Chou, L.H., and Tasuoka, F., “Seismic displacements of
geosynthetic-reinforced soil modular block walls”, Geosynthetics International,
10, No.1, pp.2-23 (2003).
33. Huang, C. C., and Chen, Y.H., “Seismic stability of soil retaining walls situated
on slope”, Journal of Geotechnical and Geoenvironmental Engineering, Vol.
130,No. 1, pp.45-57 (2004).
34. Izawa J. and Kuwano J., “Evaluation of extent of damage to geogrid reinforced
soil walls subjected to earthquakes.” Soils and Foundations, Vol. 51, No. 5, pp.
945-958 (2011).
35. Itasca Consulting Group., FLAC: Fast Lagrangian Analysis of Continua, version
5.0, Itasca Consulting Group, Inc., Minneapolis, Minn ( 2005).
36. Jason Wu & Nelson Chou, “Forensic Studies of Geosynthetic Reinforced
Structure Failures”, Journal of Performance of Constructed Facilities, ASCE,
pp.604-613 (2013).
37. Ling, H. I., Leshchinsky, D. , and Perry, E. B., ”Seismic design and performance
of geosynthetic-reinforced soil structures”, Geotechnique, Vol.47, No. 5,
pp.933-952 (1997).
38. Ling, H. I., and Leshchinsky, D., ”Effects of vertical acceleration on seismic
design of geosynthetic-reinforce soil structures”, Geotechnique, Vol. 48, No. 3,
pp.347-373 (1998).
296
39. Matasovic, N., and Yan, L., ”Newmark deformation analysis with degrading yield
acceleration”, Geosynthetics, pp. 989-999 (1997).
40. Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and
Construction Guidelines, U.S., Department of Transportation Federal Highway
Administration(FHWA), NHI Course,No. 132042, (2001).
41. Miyata, Y., and Bathurst, R. J., “Development of K-stiffness method for
geosynthetic reinforced soil walls constructed with c-φ soils.” Can. Geotech. J.,
44(12), 1391–1416 (2007a).
42. National Concrete Masonry Association, “Segmental retaining walls-seismic
design manual”, 1st ed, authored by Bathurst, R. J., and Bathurst, Jarrett and
Associates, Inc (1998).
43. National Concrete Masonry Association, “Design manual for segmental retaining
walls”, 2nd ed, Collin, J.G. ed (1996).
44. Nova-Roessig, L., and Sitar, N., “A review of seismic design methods for
reinforced soil walls and slopes.” Progress Rep. Prepared for the California
Department of Transportation, Geotechnical Rep. No. UCB/GT/95-06 (1996).
45. Nova-Roessig, L., and Sitar, N., “Centrifuge studies of the seismic response of
reinforced soil slopes.” Proc., Third Geotechnical Engineering and Soil Dynamics
Conf., Vol. 1, ASCE, Reston, Va., 458–468 (1998).
46. Nova-Roessig, L., and Sitar, N., “Centrifuge model of the seismic response of
reinforced soil slopes.” Journal of Geotechnical and Geoenviromental
Engineering, Vol. 132, No. 3, pp. 388-400 (2006).
47. Newmark, N. M., ”Effects of earthquakes on dams and embankments”,
Geotechnique, Vol. 15, pp.139-160 (1965).
297
48. Okuyama, Y.,Yoshida, T., Tatsuoka, F., Koseki, J., Uchimura, T., Sato, N., and
Oie, M., “Shear banding characteristics of granular materials and particle size
effects on the seismic stability of earth structures”, Proc. 3rd Int. Sym.
Deformation Characteristics of Geomaterials, IS Lyon 03, Dibenedetto et al. eds.,
Balkema, pp.607-616 (2003).
49. Porbaha A. and Goodings D. J., “Laboratory investigation of nonuniformly
reinforced soil-retaining structures.” Journal of Geotechnical Engineering, Vol.
122, No. 10, pp.840-848 (1997).
50. Porbaha A. and Goodings D. J., “Centrifuge modeling of geotextile-reinforced
cohesive soil retaining walls.” American Society for Testing and Materials, Vol.
20, No. 3, pp. 289-295 (1996).
51. Sabermahani M. and Fakher A. G., “Experimental study on seismic deformation
models of reinforced-soil walls.” Geotextiles and Geomembranes., Vol. 27 pp.
121-136 (2009).
52. Sakaguchi, M., “A study of the seismic behavior of geosynthetic reinforced walls
in Japan.” Geosynthetics International, 3(1), 13–30 (1996).
53. Siddharthan R. V., Ganeshwara V., Kutter B. L., El-Desouky M., Whitman R. B.,
“Seismic deformation of bar mat mechanically stabilized earth walls. I: Centrifuge
tests.” Journal of Geotechnical and Geoenviromental Engineering, Vol. 130, No.
1, pp. 14-25 (2004).
54. Shinoda M. and Bathurst R. J., “Lateral and axial deformation of PP, HDPE and
PET geogrids under tensile load.” Geotextiles and Geomembranes., Vol. 22 pp.
205-222 (2004).
55. Tasuoka, F., Tateyama, M., Uchimura, T., and Koseki,
J., ”Geosynthetic-reinforced soil retaining walls as important permanent
structures”, Geosyntthetics International, pp.3-24 (1996).
298
56. Tasuoka, F., Tateyama, M., and Koseki, J., ”Performance of soil retaining walls
for railway embankments”, Special issue of Soils and Foundations, pp.311-324
(1996).
57. University of Wisconsin-Platteville, ”Evaluation of Connection Strength” (1993).
58. Viswanadham B. V. S. and Mahajan R. R., “Centrifuge model tests on
geotextile-reinforced slopes.” Geosynthetic International, Vol. 14, No. 6, pp.
365-379 (2007).
59. Yang K. H., Zornberg J. G., Liu C. N. and Lin H. D., “Stress distribution and
development within geosynthetic-reinforced soil slopes.” Geosynthetic
International, Vol. 19, No. 1, pp. 62-78 (2012).
60. Zornberg J. G., Sitar N. and Mitchell J. K., “Performance of geosynthetic
reinforced slopes at failure.” Journal of Geotechnical and Geoenviromental
Engineering, Vol. 124, No. 8 (1998).
61. Zornberg J. G. and Arriaga F., “Stress distribution within geosynthetic-reinforced
slopes.” Journal of Geotechnical and Geoenviromental Engineering, Vol. 130, No.
1, pp. 14-25 (2003).
62. 李咸亨,「地工織物加勁擋土牆應力分佈」,地工技術,第32期,第5-12頁
(1990)。
63. 李咸亨、謝宗榮,「加勁擋土牆之抗震設計方法」,地工技術,第43期,第
11-22 頁 (1997)。
64. 李咸亨,「神戶地震中加勁擋土牆的行為」,現代營建,第210 期,第24-29
頁 (1997)。
65. 李咸亨、連偉智,「加勁擋土牆之動態行為解析」,第八屆大地工程學術研
究討論會,第886-893頁 (1999)。
299
66. 李維峰、黃亦敏,「加勁擋土牆動態設計與研發」,地工技術,第85期,第
13-24頁 (2001)。
67. 李咸亨、芮嘉航,「大變形量不織布之大型力學試驗」,碩士論文,國立台
灣工業技術學院營建工程技術研究所,台北 (1990)。
68. 李怡先,「地工合成材與土壤互制作用之力學性質」,碩士論文,國立台灣
大學土木工程學研究所,台北 (1991)。
69. 李怡先,「地工格網與土壤互制作用之研究」,博士論文,國立臺灣大學土
木工程研究所,台北 (1998)。
70. 周南山等人,「加勁擋土結構設計及施工手冊」,台北市土木技師公會
(2001)。
71. 黃景川,「921 集集地震中擋土結構之損害調查與分析」,國家地震工程研究
中心研究報告,No. NSC89-2921-Z-319-005-05,台北 (2000)。
72. 陳榮河,「加勁擋土牆之分析與設計」,地工技術,第25 期,第46~61 頁
(1989)。
73. 范嘉程、周南山(1998),「加勁擋土結構設計及施工規範準則之探討」,地
工技術第70 期,台北 (1998)。
74. 林上源,「應變率對地工加勁材基本性質影響之探討」,碩士論文,私立中原
大學土木工程研究所,(2001)。
75. 周南山,「地工合成物加勁牆分析設計之探討與評估」,地工技術第43 期,台
北 (1993)。
76. 周南山(1995),「加勁擋土結構之分析設計及其在公路與高鐵之應用」,地工
新技術在公路及鐵路之應用研討會,台北 (1995)。
77. 周南山,「加勁擋土結構在台灣的最新發展」,加勁擋土結構之最新發展研討
300
會,台北 (2000)。
78. 黃景川、陳昱宏、周禮輝,「公路擋土系統在強震下之變位與補強對策」,地
工技術第85 期,第13-24 頁,台北 (2001)。
79. 吳嘉賓,「土石壩受震應變潛能法之整合研究」,博士論文,國立中央大學土
木工程研究所博士,桃園 (2009)。