跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊家育
Jia-Yu Yang
論文名稱: 由多元校園社群關係分析對學生就業之影響
The analysis of interactions between multiple social relationships and student employment
指導教授: 蔡孟峰
Meng-Feng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 40
中文關鍵詞: 社群網路分析社群影響力校務研究
外文關鍵詞: Social Network Analysis, Social Influence, Institutional Research
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,為了因應高等教育所帶來的教育環境變遷與問題,世界各國的校務研究持續發展了數十年,透過分析不同面向、維度的學校資料,為學校的決策者提供一具有科學效力的論證與相關建議,來做出對於當下最適宜的相關政策。
    一般來說,校務研究所能涵蓋的範圍極為龐大,其限制取決於該校蒐集資料的廣度與精細程度,而其中稱為「人脈」的軟實力更是難以體現在資料之中,而社群網路分析 (Social Network Analysis) 便是我們能拿來分析個體在群體內互動的利器之一。
    本研究透過將學生所屬的相關系所、參與過的社團以及其戶籍地等社群關係,轉換成一龐大的社群網路,並且根據學生之間的親疏程度決定學生互相的影響程度,藉此找出在各個社群關係之中,學生之間的關聯會如何影響他們各自未來的就業類型。


    In recent years, in response to changes in the educational environment and problems brought about by higher education, school affairs research in various countries around the world has continued to develop for decades. Through the analysis of school data of different dimensions and dimensions, it has provided school decision-makers with a scientific effect. The argument and relevant recommendations of the company will make the most appropriate relevant policies for the moment. Generally speaking, the scope of the school affairs research institute is extremely large, and its limitation depends on the breadth and fineness of the data collected by the school, and the soft power called ”personal connections” is even more difficult to reflect in the data. Social Network Analysis is one of the powerful tools we can use to analyze the interaction of individuals within a group.
    This research transforms the social relationships of the students’ affiliates, the clubs they have participated in, and their residence registration into a huge social network, and determines the degree of mutual influence between students based on the degree of closeness between students. Find out how students will affect their respective types of employment in the future in each community relationship.

    摘要 i Abstract ii 誌謝 iv 目錄 v 一、 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構介紹 3 二、 相關研究 4 2.1 校務研究 4 2.2 社群網路分析 4 2.3 Linear threshold model 5 2.4 鄧巴數 (Dunbar’s number) 7 三、 系統架構 9 3.1 系統架構 9 3.2 資料來源與資料前處理 10 3.3 建置社群網路 10 3.4 LT model 計算 10 四、 研究方法 11 4.1 資料來源與資料前處理 11 4.2 就業類型的定義 11 4.3 建置 node 13 4.4 建置學生間的關聯 13 4.5 計算關聯的權重 15 4.6 計算 LT model 的影響結果 16 五、 實驗結果 18 5.1 實驗環境與軟硬體規格 18 5.2 實驗執行結果-時間 18 5.3 僅考慮相同系所的影響力 19 5.4 僅考慮相同社團的影響力 20 5.5 僅考慮相同戶籍地的影響力 21 5.6 考慮全部關聯的影響力 23 六、 總結 25 參考文獻 27

    [1] A. Vaisman and E. Zimányi, “Data warehouse systems,” Data-Centric Systems and Applications, 2014.
    [2] 國立中央大學 IR 辦公室, 國立中央大學 ir 分享, http://www.tair.tw/Media/Default/Seminar/1061124-25/1125.05-%E8%98%87%E6%9C%A8%E6%98%A5%E4%B8%BB%E4%BB%BB.pdf , 2016.
    [3] 李政德、林守德, 巨量資料中的小世界––漫談社群網路, https://ee.ntu.edu.tw/upload/hischool/doc/2014.05.pdf , 2014.
    [4] R. A. Hill and R. I. Dunbar, “Social network analysis,” Human nature, vol. 14,no. 1, pp. 53–72, 2003. doi: https://doi.org/10.1177/0038038588022001007.
    [5] J. L. Saupe and J. R. Montgomery, “The nature and role of institutional research...memo to a college or university.,” 1970.
    [6] R. D. Howard, G. W. McLaughlin, and W. E. Knight, The handbook of institutional research. John Wiley & Sons, 2012.
    [7] S. S.-H. Ho and Y.-P. Peng, “Strategic agenda-setting of institutional research in taiwan’s higher education institutions,” Higher Education Evaluation and Development, vol. 10, no. 1, pp. 93–119, 2016.
    [8] S. Goldrick-Rab, “Challenges and opportunities for improving community college student success,” Review of Educational Research, vol. 80, no. 3, pp. 437–469, 2010.
    [9] J. S. He, M. Han, S. Ji, T. Du, and Z. Li, “Spreading social influence with both positive and negative opinions in online networks,” Big Data Mining and Analytics, vol. 2, no. 2, pp. 100–117, 2019. doi: 10.26599/BDMA.2018.9020034.
    [10] L. Freeman, “The development of social network analysis,” A Study in the Sociology of Science, vol. 1, no. 687, pp. 159–167, 2004.
    [11] P. J. Carrington, J. Scott, and S. Wasserman, Models and methods in social network analysis. Cambridge university press, 2005, vol. 28.
    [12] D. Kempe, J. Kleinberg, and É. Tardos, “Influential nodes in a diffusion model for social networks,” in International Colloquium on Automata, Languages, and
    Programming, Springer, 2005, pp. 1127–1138.
    [13] W. Liang, C. Shen, X. Li, R. Nishide, I. Piumarta, and H. Takada, “Influence maximization in signed social networks with opinion formation,” IEEE Access, vol. 7, pp. 68 837–68 852, 2019.
    [14] M. Granovetter, “Threshold models of collective behavior,” American journal of sociology, vol. 83, no. 6, pp. 1420–1443, 1978.
    [15] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in social networks under the linear threshold model,” in 2010 IEEE international conference
    on data mining, IEEE, 2010, pp. 88–97.
    [16] R. Dunbar, “Neocortex size as a constraint on group size in primates,” Journal of Human Evolution, vol. 22, no. 6, pp. 469–493, 1992, issn: 0047-2484. doi: https:
    //doi.org/10.1016/0047-2484(92)90081-J.[Online].Available:https://www.sciencedirect.com/science/article/pii/004724849290081J.
    [17] J. Scott, “Social network size in humans,” Sociology, vol. 22, no. 1, pp. 109–127, 1988.
    [18] 行政院主計總處, 行業統計分類, https://mobile.stat.gov.tw/StandardIndustrialClassification.aspx , 2021.
    [19] UCAN 大專院校職能平台, 專業職能, https://ucan.moe.edu.tw/search/search.aspx.

    QR CODE
    :::