| 研究生: |
楊家育 Jia-Yu Yang |
|---|---|
| 論文名稱: |
由多元校園社群關係分析對學生就業之影響 The analysis of interactions between multiple social relationships and student employment |
| 指導教授: |
蔡孟峰
Meng-Feng Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 社群網路分析 、社群影響力 、校務研究 |
| 外文關鍵詞: | Social Network Analysis, Social Influence, Institutional Research |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,為了因應高等教育所帶來的教育環境變遷與問題,世界各國的校務研究持續發展了數十年,透過分析不同面向、維度的學校資料,為學校的決策者提供一具有科學效力的論證與相關建議,來做出對於當下最適宜的相關政策。
一般來說,校務研究所能涵蓋的範圍極為龐大,其限制取決於該校蒐集資料的廣度與精細程度,而其中稱為「人脈」的軟實力更是難以體現在資料之中,而社群網路分析 (Social Network Analysis) 便是我們能拿來分析個體在群體內互動的利器之一。
本研究透過將學生所屬的相關系所、參與過的社團以及其戶籍地等社群關係,轉換成一龐大的社群網路,並且根據學生之間的親疏程度決定學生互相的影響程度,藉此找出在各個社群關係之中,學生之間的關聯會如何影響他們各自未來的就業類型。
In recent years, in response to changes in the educational environment and problems brought about by higher education, school affairs research in various countries around the world has continued to develop for decades. Through the analysis of school data of different dimensions and dimensions, it has provided school decision-makers with a scientific effect. The argument and relevant recommendations of the company will make the most appropriate relevant policies for the moment. Generally speaking, the scope of the school affairs research institute is extremely large, and its limitation depends on the breadth and fineness of the data collected by the school, and the soft power called ”personal connections” is even more difficult to reflect in the data. Social Network Analysis is one of the powerful tools we can use to analyze the interaction of individuals within a group.
This research transforms the social relationships of the students’ affiliates, the clubs they have participated in, and their residence registration into a huge social network, and determines the degree of mutual influence between students based on the degree of closeness between students. Find out how students will affect their respective types of employment in the future in each community relationship.
[1] A. Vaisman and E. Zimányi, “Data warehouse systems,” Data-Centric Systems and Applications, 2014.
[2] 國立中央大學 IR 辦公室, 國立中央大學 ir 分享, http://www.tair.tw/Media/Default/Seminar/1061124-25/1125.05-%E8%98%87%E6%9C%A8%E6%98%A5%E4%B8%BB%E4%BB%BB.pdf , 2016.
[3] 李政德、林守德, 巨量資料中的小世界––漫談社群網路, https://ee.ntu.edu.tw/upload/hischool/doc/2014.05.pdf , 2014.
[4] R. A. Hill and R. I. Dunbar, “Social network analysis,” Human nature, vol. 14,no. 1, pp. 53–72, 2003. doi: https://doi.org/10.1177/0038038588022001007.
[5] J. L. Saupe and J. R. Montgomery, “The nature and role of institutional research...memo to a college or university.,” 1970.
[6] R. D. Howard, G. W. McLaughlin, and W. E. Knight, The handbook of institutional research. John Wiley & Sons, 2012.
[7] S. S.-H. Ho and Y.-P. Peng, “Strategic agenda-setting of institutional research in taiwan’s higher education institutions,” Higher Education Evaluation and Development, vol. 10, no. 1, pp. 93–119, 2016.
[8] S. Goldrick-Rab, “Challenges and opportunities for improving community college student success,” Review of Educational Research, vol. 80, no. 3, pp. 437–469, 2010.
[9] J. S. He, M. Han, S. Ji, T. Du, and Z. Li, “Spreading social influence with both positive and negative opinions in online networks,” Big Data Mining and Analytics, vol. 2, no. 2, pp. 100–117, 2019. doi: 10.26599/BDMA.2018.9020034.
[10] L. Freeman, “The development of social network analysis,” A Study in the Sociology of Science, vol. 1, no. 687, pp. 159–167, 2004.
[11] P. J. Carrington, J. Scott, and S. Wasserman, Models and methods in social network analysis. Cambridge university press, 2005, vol. 28.
[12] D. Kempe, J. Kleinberg, and É. Tardos, “Influential nodes in a diffusion model for social networks,” in International Colloquium on Automata, Languages, and
Programming, Springer, 2005, pp. 1127–1138.
[13] W. Liang, C. Shen, X. Li, R. Nishide, I. Piumarta, and H. Takada, “Influence maximization in signed social networks with opinion formation,” IEEE Access, vol. 7, pp. 68 837–68 852, 2019.
[14] M. Granovetter, “Threshold models of collective behavior,” American journal of sociology, vol. 83, no. 6, pp. 1420–1443, 1978.
[15] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in social networks under the linear threshold model,” in 2010 IEEE international conference
on data mining, IEEE, 2010, pp. 88–97.
[16] R. Dunbar, “Neocortex size as a constraint on group size in primates,” Journal of Human Evolution, vol. 22, no. 6, pp. 469–493, 1992, issn: 0047-2484. doi: https:
//doi.org/10.1016/0047-2484(92)90081-J.[Online].Available:https://www.sciencedirect.com/science/article/pii/004724849290081J.
[17] J. Scott, “Social network size in humans,” Sociology, vol. 22, no. 1, pp. 109–127, 1988.
[18] 行政院主計總處, 行業統計分類, https://mobile.stat.gov.tw/StandardIndustrialClassification.aspx , 2021.
[19] UCAN 大專院校職能平台, 專業職能, https://ucan.moe.edu.tw/search/search.aspx.