跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張育銘
Yu-ming Jhang
論文名稱: 多孔性鈦基電極對鋁合金放電加工之研究
A Study on Electrical Discharge Machining Al Alloys by Porous Titanium Electrodes
指導教授: 顏炳華
Biing-hwa Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 71
中文關鍵詞: 表面改質放電加工多孔電極
外文關鍵詞: Surface Modification, Porous electrode, Electrical discharge machining
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般放電加工大多使用實心電極來加工,燒結多孔電極之使用較不普遍。本實驗係藉由三種不同鈦基電極(含實心與多孔),調整電流大小與衝擊係數對鋁合金做放電加工實驗,探討鋁合金經由不同電極、電流、衝擊係數放電加工後的加工特性、表面與斷面元素分析、斷面硬度等特性。希望在各種參數變化下,以期使材料能快速移除,並在加工過程中使工件表面合金化,產生改質層。
    實驗結果得知,使用TiN電極的材料移除率、電極消耗率與表面粗糙度皆最大,Ti(25%TiN)電極皆次之,Ti(6Al4V)電極則最低。經由EDS半定量分析,TiN電極加工後之工件表面與斷面Ti元素含量最多,Ti(25%TiN)電極次之,Ti(6Al4V)電極則最低。另外由XRD繞射儀分析,此三種電極加工後之工件表面皆有碳化鋁(AlC)與碳化鈦(TiC)化合物成分。最後做斷面微硬度量測,比較多孔與實心電極對工件表面改質的效果。可得知多孔鈦基電極加工鋁合金較有表面改質效果,工件表面與橫斷面有較多的Ti元素含量,且可改善鋁合金表面的微硬度特性。


    Most of the general discharge machining process using solid electrodes. The use of sintered porous electrode is less. The experimental by three different titanium-based electrodes (including solid and porous). Adjust the current size and the impact factor of aluminum alloy EDM experiment. Discuss aluminum through the different electrodes, electric current and impact factor after EDM processing characteristics, Surface with cross-section elemental analysis, Cross-section hardness and other characteristics. We hope that changes various parameters to have quickly remove material. And in the processing process, to the surface alloying, produces a modified layer.
    The results indicate that using TiN electrode caused material removal rate, electrode wear rate and surface roughness are the largest, Ti (25% TiN) electrodes are the second, Ti (6Al4V) electrode is the lowest. By EDS analysis, With the TiN electrode EDM workpiece surface and the workpiece cross-section of Ti element content are the largest, Ti (25% TiN) electrodes are the second, Ti (6Al4V) electrode is the lowest. Analyzed by the XRD diffraction, The three kinds of electrode EDM workpiece surface have aluminum carbide (AlC) and titanium carbide (TiC) compound ingredients. Finally, Do the cross-section micro-hardness measurements. Compare porous and solid electrodes on the surface modification effect. Porous titanium-based electrodes that can be processed aluminum alloy are more surface modification effects. Surface and cross-sectional have more elements of Ti content. Aluminum surface can improve the characteristics of the micro-hardness.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1放電加工簡史及其發展 1 1-2研究背景 3 1-3文獻回顧 5 1-4研究方法 7 第二章 放電加工原理 8 2-1放電加工之原理 8 2-2放電加工材料去除機制 10 2-3放電加工參數設定及其影響 13 2-4放電加工之特性 18 第三章 實驗設備與方法 21 3-1 實驗設備 21 3-1-1 放電加工機 21 3-1-2 超音波洗淨機 22 3-1-3 精密電子天平 23 3-1-4 表面粗糙度儀 23 3-1-5 CNC線切割放電加工機 24 3-1-6 掃描式電子顯微鏡暨EDS系統 24 3-1-7 X光繞射儀 25 3-2 實驗材料 26 3-2-1 工件材料 26 3-2-2工件材料的準備 27 3-2-3 電極材料 28 3-2-4 放電加工液 29 3-3 實驗方法 30 3-4 電極材料代號定義 31 3-5 實驗流程 32 第四章 實驗結果與討論 33 4-1 多孔性TiN電極對鋁合金放電加工之探討 33 4-1-1材料移除率與電極消耗率 33 4-1-2表面粗糙度與表面型態 34 4-1-3表面元素分析 37 4-2 比較不同電極對鋁合金之加工特性 41 4-2-1材料移除率與電極消耗率 41 4-2-2表面粗糙度與表面型態 45 4-3 不同電極對鋁合金表面性質之影響 51 4-3-1表面元素分析 51 4-3-2表面X-Ray相分析 60 4-3-3斷面元素分佈 63 4-3-4微硬度分佈 65 第五章 結論 66 參考文獻 67 個人簡歷 71

    1.井上潔著,黃錦鐘譯,放電加工,高立圖書有限公司,1998。
    2.G.F Benedict, Nontradtional manufacturing processes, Marcel Dekker, New York, 1987.
    3.E.J. Weller, “Nontradtional manufacturing processes ”, Publish by the Society of Manufacturing Engineers, Dearborn, Michigan, U.S.A, 1983.
    4.A. Gangadhur, M.S. Shunmugam, P.K. Philip, “Surface modification in electrodischarge processing with a powder compact tool electrode ”, Wear, Vol 143, pp. 45–55, 1991.
    5.N. Mohri, N. Saito, Y. Tsunekawa, N. Kinoshita, “Metal surface modification by electrical discharge machining with composite electrode ”, Annals of the CIRP, Vol 42(1), pp. 219–222, 1993.
    6.Y. Fukuzawa, Y. Kojima, E. Sekiguti, N. Mohri, “Surface modification of stainless steel by electrical discharge machining ”, The Iron and Steel Institute of Japan International, Vol 33(9), pp. 996-1002, 1993.
    7.Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti, N. Mohri, “Fabrication
    of surface modification layer on stainless steel by electrical discharge
    machining ”, Materials and Manufacturing Processes, Vol 10(2), pp. 195–203, 1995.
    8.J.S. Soni, G. Ghakraverti, “Experiment investigation on migration of
    material during EDM of die steel (T215 Cr12) ”, Journal of Materials
    Processing Technology, Vol 56, pp. 439-451, 1996.
    9.Y. Tsunekawa, M. Okumiya, N. Mohri, E. Kuribe, “Formation of
    composite layer containing TiC precipitates by electrical discharge
    alloying, Materials Transactions ”, JIM, Vol 38 (7), pp. 630–635, 1997.
    10.M.P. Samuel, P.K. Philip, “Powder metallurgy electrodes for electrical discharge machining ”, International Journal of Machine Tools & Manufacture, Vol 37(11), pp. 1625–1633, 1997.
    11.D.I. Pantelis, N.M. Vaxevanidis, A.E. Houndri, P. Dumas, M. Jeandin, “Investigation into the application of electrodischarge machining as steel surface modification technique ”, Surface Engineering, Vol 14(1), pp. 55–61, 1998.
    12.L. Li, Y.S. Wong, J.Y.H. Fuh, L. Lu, “Effect of TiC copper-tungsten
    electrodes on EDM performance ”, Journal of Materials Processing Technology, Vol 113, pp. 563-567, 2001.
    13.Z.L. Wang, Y. Fang, P.N. Wu, W.S. Zhao, K. Cheng, “Surface
    modification process by electrical discharge machining with Ti powder green compact electrode ”, Journal of Materials Processing Technology, Vol 129, pp. 139-142, 2002.
    14.J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, E.M. Aspinwall,
    “Workpiece surface modification using electrical discharge machining ”,
    International Journal of Machine Tools & Manufacture, Vol 43, pp. 121–128, 2003.
    15.D.K. Aspinwall, R.C. Dewes, H.G. Lee, J. Simao, “Electrical discharge machining surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire ”, Annals of the CIRP, Vol 52(1), pp. 151–156, 2003.
    16.T. Moro, N. Mohri, H. Otsubo, A. Goto, N. Saito, “Study on the surface modification system with electrical discharge machine in the practical usage ”, Journal of Materials Processing Technology, Vol 149, pp. 65–70, 2004.
    17.C.Y. Bai, C.H. Koo, “Effects of kerosene or distilled water as dielectric on electrical discharge alloying of superalloy Haynes 230 with Al–Mo composite electrode ”, Surface and Coatings Technology, Vol 200, pp. 4127–4135, 2006.
    18.孔慶准著,特種加工,同濟大學出版社,1997。
    19.劉弘松,「鈦合金之微能量放電加工特性研究」,國立中央大學,碩士論文,1993。
    20.M.P. Samuel, P.K. Philip, “Power metallurgy tool electrode for
    electrical discharge machining ”, International Journal of Machine
    Tools & Manufacture, Vol 37(11), pp. 1625–1633, 1997.
    21.Y.F. Luo, “An evaluation of spark mobility in electrical discharge
    Machining ”, IEEE Transaction on Plasma Science, Vol 26(3), pp. 1010–1016, 1998.
    22.N. Mohri, N. Saito, Y. Tsunekawa, “Metal surface modification by
    electrical discharge machining with composite electrode ”, Annals of
    the CIRP, Vol 42, pp. 219–222, 1993.
    23.R. Bormann, “Understanding Die-Sinking EDM Surface Integrity ”, Journal Carbide and Tool, pp. 12-16, 1989.
    24.L.C. Lee, L.C. Lim, Y.S. Wong, “Towards Crack Minimisation of EDMed Surface ”, Journal Materials Processing Technology, Vol. 32, pp.516-523, 1990.
    25.Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti, N. Mohri, “Fabrication
    of surface modification layer on stainless steel by electrical discharge
    machining ”, Materials and Manufacture Processes, Vol 10(2), pp. 195–203, 1995.
    26.Y. Tsunekawa, M. Okumiya, N. Mohri, E. Kuribe, “Formation of
    composite layer containing TiC precipitates by electrical discharge
    alloying, Materials Transactions ”, JIM, Vol 38(7), pp. 630–635, 1997.
    27.楊榮顯著,機械材料,逢甲書局。

    QR CODE
    :::