| 研究生: |
王中彥 Chung-Yen Wang |
|---|---|
| 論文名稱: |
熱處理模具鋼深冷與QPQ處理對機械性質及耐腐蝕性影響 |
| 指導教授: |
施登士
Teng-Shih Shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 模具鋼 、深冷處理 、QPQ處理 、X-ray繞射 、氮化膜 、氧化膜 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,準備M333,SKD61和M390三種型號模具鋼,予以固溶處理再進行-60及-196℃深冷處理,再實施QPQ探討對模具鋼機械性質的影響。觀察深冷處理後顯微結構及殘留沃斯田鐵的變化,QPQ處理後氮﹑氧層之膜厚及物相分析。根據XRD顯示出深冷處理後比高溫回火殘留沃斯田鐵顯著減少,及氧﹑氮化層物相為Fe3O4﹑ Fe2-3N﹑ CrN等有利於硬度及耐磨的提升。
電位極化曲線試驗顯示出經QPQ處理後與深冷處理比較未有較好的耐蝕能力,是由於氮化期間過多的CrN析出導致表面及基材 Cr 含量急遽減少導致耐蝕性下降,另一原因氮化層有少數裂紋產生。
EPMA maping分析元素強度分佈可看到三種鋼材氮化層厚度不一(10~15µm)主要因材料Cr含量不同Cr元素會抑制N原子之擴散之故。利用TEM穿透式電子顯微鏡觀察深冷與QPQ處理之碳化物之變化,發現氮化物大小形狀種類並無明顯變化,因QPQ處理溫度介於500~600℃之間無直接影響到碳化物溶解與成長。
In the study,three types of die steels(M333,SKD61,M390) were prepared via austenitiling treatment quenched to room temperature the followed by cryogenic treatment(-60 and -196℃) for 8hrs.All sample were temepered twice at 500℃ for 2hrs. Quench-Polish-Quench (QPQ) treatment was also conducted for surface hardening.The microstructure and retained austenite of the cryogenic treated sample were observed measured. The thickness of oxide films and nitride films and phase analyses of the QPQ Treated sample were investigated by SEM and OM.
Accodding to XRD analyses retained austenitic was significantly decreased sample matrix after cryogenic treatment.The analyzed phase displayed that oxide films and nitride films were mainly Fe¬3¬O4,Fe2-3N and CrN,which hardness increase.
The QPQ treated sample displayed poor corrosion than that without QPQ treated samples due to excessive CrN precipitated during nitriding,so that the content of Cr dereased in their matrix to result in decreasing corrosion resistance.
EPMA mapping analyses show the thickness of nitride layer and oxide layer on different sample. Particles of CrN and FeN were also Identified film mapping analyses.No significant variation of carbide size were observed by TEM between with/without QPQ treated samples size.
[1]陳皇均編譯 鋼-顯微組織與性質,全華科技圖書股份有限公司出版(1990)
[2]Y.Guanghua, H.Xinmin,W.yanqing, Q.Xingguo Y.Ming “Effect of heat treatment on mechanical properties of H13 steel”Metal Science and Heat Treatment Vol.52,2010,pp.46-48
[3] 大和久重雄(黃振賢譯),“超深冷處理”,金屬熱處理第76期,2003,
pp. 77-78。
[4]熊仁洲,劉復龍,“超深冷處理(Cryogenic Treatment)之簡介”,金屬
熱處理第35 期,1992,pp. 61-65。
[5]徐培欽,金屬熱處理之精隨-超冷處理,超冷處理應用系列報導,台灣超冷處理科技有限公司,1997。
[6]M. Preciado , P.M. Bravo, J.M. Alegre,“Effect of low temperature tempering prior cryogenic treatment on carburized steels”Journal of Materials Processing Technology,Vol.176 , 2006 , pp.41-44。
[7] S. Zhirafar, A. Rezaeian, M. Pugh, “Effect of cryogenic treatment on the
mechanical properties of 4340 steel”, Journal of Materials Processing
Technology, Vol. 186, 2007, pp. 298-303
[8] H.S. Yang, J. Wang, B.L. Shen, H.H. Liu, S.J. Gao, S.J. Huang,“Effect of
cryogenic treatment on the matrix structure and abrasion resistance of white cast
iron subjected to destabilization treatment”, Wear 261,2006,pp. 1150-1154
[9 ]H. J. Kim, Y. G. Kweon, “The effects of retained austenite on dry sliding
wear behavior of carburized steels”, Wear, 193, 1996, pp. 8-15
[10] R.F.Barron,“Cryogenic treatment of metal to improve wear”resistance”resistance”Cryogenics,Vol.22 1982 pp.409-413
[11] A.Oppenkowskia,S.Weber,W.Theisen,Evaluation of factors
influencing deep cryogenic treatment that affect the properties of tool steels, Journal of Materials Processing Technology 210, 2010, pp.1949-1955
[12] P. Sweeney Jr., Deep Cryogenics: The Great Cold Debate, Heat Treating,
Vol. 18(2), 1986, pp. 28-32.
[13] D. N. Collins, “Deep Cryogenic Treatment of Tool Steels: a Review”,
Heat Treatment of Metals, February, 1996, pp. 40-42.
[14] Thomas P. Sweeney Jr., Deep Cryogenics: The Great Cold Debate, Heat Treating,Vol. 18(2), 1986, pp. 28-32
[15] C. H. Surberg, ”Effect of deep cold treatment on two case hardening
steels”, Acta Metall. Sin.(Engl. Lett.), V01.21, No.1, 2008, pp.l-7
[16 ]R.E.Bilstein“Stages to Saturn:A Technological History of the Appllo/Saturn Launch Vehiclses”NASA History office. 1996 pp.89-91
[17]Mahdi Koneshlou, Kaveh Meshinchi Asl, Farzad Khomamizadeh,Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel,Cryogenics,Vol 51,pp.55-61,2011
[18] D.Das, A.K.Dutta, K.K.Ray,Influence of varied cryotreatment on the wear behavior of AISI D2 steel, Wear, Vol. 266, 2009, pp. 297-309.
[19] D.Das, K.K.Ray, A.K.Dutta, Influence of temperature of sub-zero treatments on the wear behaviour of die steel, Wear, Vol. 267, 2009, pp.1361-1370.
[20] D.Das, A.K.Dutta,K.K.Ray,Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel, Wear, Vol. 267,2009, pp. 1371-1380.
[21] D.Das, A.K.Dutta, K.K.Ray,Optimization of the duration of cryogenic processing to maximize wear resistance of AISI D2 steel, Cryogenics 49, 2009, pp. 176-184.
[22] D. Das, A. K. Dutta, K. K. Ray, Sub-zero treatments of AISI D2 steel: Part II. Wear behavior, Materials Science and Engineering A527, 2010, pp. 2194-2206
[23] S. Li, L. Deng, X. Wu, Y. Min, H. Wang, Influence of deep cryogenic
treatment on microstructure and evaluation by internal friction of a tool
steel, Cryogenics 50, 2010, pp. 754-758.
[24] A.Molinari,M.Pellizzari,S.Gialanella,G.Straffelini,K.H.Stiasny,“Effect of deep cryogenic treatment on the mechanical properties of steel”,J. Mater. Proc.Tech 118, 2001,pp350-355
[25] Shaohong Li, Na Min, Xiaochun Wu, Chenhui Li, Leilei Tang,“Experimental verification of segregation of carbon and precipitation of carbides due to deep cryogenic treatment for tool steel by internal friction method”, Materials Science&Engineering A575,2013,pp.51-60
[26] D.Das,A.K.Dutta,V.Toppo,K.K.Kay“Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel”,Materials and Manufacturing Processes,22,2007,pp.474-480
[27]A.I.Tyshchenko,W.Theisen,A.Oppenkowski,S.Sienert,O.N.Razumov,A.P.Skoblik
,V.A.Sirosh,Yu.N.Petrov,V.G.Gavriljuk,“Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel”, Materials Science&Engineering A527,2010,pp7027-7039
[28] Y.M.Rhyim,S.H.Han,Young Sang Na,Jong Hoon Lee“Effect of deep cryogenic treatmeat on carbide pricipitation and mechanical properties of tool steel”Solid Stage Phenom, Vol.118, 2006 pp.9-14
[29] V.G.Gavriljuk, W.Theisen, V.V.Sirosh, E.V.Polshin, A.Kortmann, G.S.Mogilny, Yu.N.Petrov, Ye.V.Tarusin,“Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatmant”,Acta Materialia 61,2013,pp.1705-1715
[30] K.Marusic,H,Otmacic,D.Landek,F.Cajner,E.Stupnisek-Lisac,“Modification of carbon steel surface by the Tenifer process nitrocarburizing and post-oxidation”, Surface&Coatings Technology 201,2006,3415-3421
[31] H . L. Cao, C. P. Luo, J. W. Liu, “Formation of a nanostructured CrN
0lay on nitrided tool steel by low-temperature chromizing”, Scripta
0Ma Vol 58, pp. 786-789, 2008
[32] W. P. Tong, “Nitriding iron at lower temperatures”, Science, Vol 299
0pp. 686-688, 2003
[33] 機械工程手冊/電機工程手冊,熱處理與表面處理-精密製造,五南圖書出版股份有限公司,pp.7-140 2002
[34] 王龍祥,鋼鐵表面處理之理論與實際,復文書局,pp.153﹑ pp.150-151﹑ pp.164-165
[35] H .Y. Li, D. F. Luo, C.F. Yeung, K. H. Lau, “Microstructural studies of complex salt bath heat-treated steels”, Journal of Materials Technology, Vol 69, pp. 45-49, 1997
[36] C. F. Yeung, K. H. Lau, H. Y. Li, D. F. Luo, “Advance QPQ complex salt
bath h eat t reatment”, J ournal o f M aterials P rocessing Technology, Vol 6 6,
pp. 249-252, 1997
[37] G ui-jiang Li, Qian Peng, Cong Li, Ying Wang, Jian Gao, Shu-yuan Chen,Wang, Bao-luo Shen, “Microstructure analysis of 304L austenitic steel by QPQ complex salt bath treatment”, Materials Vol 9, pp. 359-1363, 2009
[38] G ui-jiang Li, Qian Peng, Jun Wang, Cong Li , Ying Wang, Jian Gao, Shu Chen, Bao Luo Shen, “Surface microstructure of 316L austenitic steel by the salt bath nitrocarburizing and post-oxidation known as QPQ”, Surface and Coatings Technology, Vol 202, pp.2870, 2008
[39] G ui-jiang Li, Jun Wang, Qian Peng, Cong Li, Ying Wang, Bao Luo Shen, “Influence of salt bath nitrocarburizing and post-oxidation process on
microstructure evolution of 17-4PH stainless steel”, Journal of Processing Technology, Vol 207, pp. 187-192, 2008
[40] Zheng-shou, Fei.Sun, Fan-na.Meng, Jing.Hu“Effect of QPQ treatment on the microstructure and properties of AISI H13 steel ”,Department of mechanical engineering
[41] P.Jacquet, J.B.Coudert, P.Lourdin,“How different steel grades react to a salt bath nitrocarburizing and post-oxidation process:Influence of alloying element”,Surface&Coatings Technology205,2011,pp.4064-4067
[42] F.S. Chen Y.H. “Cheng Assessment of Corrosion and Wear Resistance Behavior on the Coated Layers of 316 Austenitic Stainless Steel Fabricated by Different Plasma Nitriding”大同大學材料工程研究所
[43] L.H.Chiu,S.H.Yeh,W.C.Lo,C.L.Huang“Effect of vacuum heat treatment on the structure and distortion of JIS SKD61 Hot Work Mold Steel”,金屬工業研究發展中心
[44] R. L. Banerjee, X-ray diffraction determination of retained austenite, J.
Heat treating 2, 1980, pp. 147-149.