| 研究生: |
王玲絲 Ling-Sui Wang |
|---|---|
| 論文名稱: |
苗栗地區儲集層孔隙率與滲透率特性評估 Evaluation characteristics of porosity and permeability of reservoir rocks over Miaoli area |
| 指導教授: |
蔡龍珆
Loung-Yie Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 岩象分析 、孔隙率 、滲透率 、儲集層 |
| 外文關鍵詞: | petrographic analysis, reservoir, permeability, porosity |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為達成二氧化碳地質封存的目標,儲集岩層不僅需要適當之地質構造、地層深度及厚度等條件,岩層的孔隙率與滲透率亦為重要之評估因素。本研究採集苗栗地區北寮砂岩、觀音山砂岩、東坑層、上福基砂岩、關刀山砂岩、魚藤坪砂岩及卓蘭層砂岩為樣本,以孔隙率/滲透率儀測量不同圍壓下之孔隙率與滲透率,利用岩石光薄片分析礦物組成及顆粒組織,並配合掃描式電子顯微鏡觀察孔隙結構,探討砂岩層孔隙率與滲透率之影響因素,作為二氧化碳地質封存之評估參考。分析結果以上福基砂岩之礦物組成以石英所佔比例最高、平均粒徑最大且顆粒間之孔隙亦較大,具最高孔隙率及滲透率,圍壓5MPa下孔隙率20.8%、滲透率3.0E-13m2。東坑層的淘選度較上福基砂岩好,但平均粒徑較小,因此孔隙率及滲透率居次,圍壓5MPa下孔隙率14.8%、滲透率3.4E-15m2。整體而言,儲集岩層孔隙率與滲透率除了受埋藏深度之壓密應力影響,也受礦物組成、顆粒大小、淘選度及膠結、溶解等成岩作用所影響。埋藏深度愈深使有效應力愈大,孔隙率與滲透率亦隨之變小;礦物組成及顆粒大小、形狀、排列等則會影響孔隙的大小與連通性,進而影響孔隙率與滲透率。壓密作用及膠結作用使孔隙減少,溶解作用則使孔隙增加,在成岩作用不同階段中,原生孔隙及次生孔隙影響並控制岩層的孔隙率及滲透率。
In order to achieve the goal for geological storage of CO2, important assessment factors for reservoir rocks include not only suitable geological structure, thickness and depth, but also high porosity and permeability. This study is aimed to determine porosity and permeability, mineral compositions and pore structures of reservoir sandstones by using porosity/permeability measurement, thin section and SEM analysis. Characteristics and influencing factors of porosity and permeability of reservoir sandstones in Miaoli area were studied, so as to evaluate their storage potential for CO2 sequestration. Samples from seven different sandstone formations in Miaoli area were collected, including Beiliao Sandstone, Kuanyinshan Sandstone, Tongkeng Formation, Shangfuchi Sandstone, Guandaoshan Sandstone, Yutengping Sandstone and Cholan Formation. According to the analytic results, Shangfuchi Sandstone exhibits the highest porosity (20.8%) and permeability (3.0E-13m2) under 5 MPa confining pressure as well as the largest quartz content, grain size and pore size. In addition, Tongkeng Formation stands the second place in porosity (14.8%) and permeability (3.4E-15m2) under 5 MPa confining pressure. Overall, porosity and permeability were influenced not only by burial depth, but also by mineral composition, grain fabric and diagenetic processes. Increased burial depth usually leads to increased compaction as well as decreased porosity and permeability. Furthermore, mineral composition, grain size, shape, and packing influence the connectivity and size of pores and fractures, and then the porosity and permeability. Compaction and cementation could reduce porosity and permeability, but dissolution could increase them. Primary and secondary porosity of reservoir rocks were affected during different stages of diagenetic processes.
〔1〕IPCC, IPCC special report on carbon dioxide capture and storage, prepared by working groupⅢ of the Intergovernmental Panel on Climate Change ﹝Metz. B., O. Davidson, H. C. de Coninck, M. Loos, and L.A. Meyer(eds.)﹞Cambridge University Press, Cambridge, United Kingdom and New York, NY. USA, 442p, 2005.
﹝2﹞Pettijohn, F. J., Sedimentary Rocks, Harper and Row, New York, 628p, 1975.
﹝3﹞CO2CRC, Storage capacity estimation, site selection and characterization for CO2 storage projects, Cooperative Research Centre for Greenhouse Gas Technologies, Canberra. CO2CRC Report No: RPT08-1001, 52p, 2008.
﹝4﹞Selley, R. C., Elements of petroleum geology, Academic Press, 470p, 1998.
〔5〕陳培源,台灣地質,台灣省應用地質技師公會,共526頁,2006。
〔6〕周瑞燉,台灣麓山帶地質,中央地質調查所特刊第六號,1992。
〔7〕Khidir, A. and Catuneanu, O., Reservoir characterization of Scollard-age fluvial sandstones, Alberta foredeep, Marine and Petroleum Geology, 27, 2037-2050, 2010.
〔8〕何信昌,苗栗圖幅說明書,經濟部中央地質調查所,共69頁,1994。
〔9〕Walker, J. D., and Geissman, J. W., compilers, 2009 Geologic Time Scale: Geological Society of America, doi: 10.1130/2009.CTS004R2C, 2009.
〔10〕李錦發,東勢圖幅說明書,經濟部中央地質調查所,共117頁,2000。
〔11〕江紹平,台灣中部早期前陸盆地的地層紀錄,國立中央大學,碩士論文,2007。
〔12〕台灣油礦探勘總處,出磺坑構造地質剖面勘查指南,地質,7(2), 83-90,1986。
〔13〕何春蓀,台灣地質概論,經濟部中央地質調查所,共164頁,1986。
〔14〕鄧屬予,台灣的沉積岩,經濟部中央地質調查所,共235頁,1997。
〔15〕二氧化碳捕獲與封存技術網http://ccs.tw/。
〔16〕Bachu, S., Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change, Environmental Geology, 44(3), 277-289, 2003.
〔17〕Bachu, S., Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change, Energy Conversion and Management, 41(9), 953-970, 2000.
〔18〕Holloway, S. and Savage, D., The potential for aquifer disposal of carbon dioxide in the UK, Energy Conversion and Management, 34(9-11), 925-932, 1993.
〔19〕Cook, P. J., Rigg, A. J., Bradshaw, J., Putting it back from where it came from: is geological disposal of carbon dioxide an option for Australia, The APPEA Journal, 40(1), 654-666, 2000.
〔20〕Lindeberg, E., Escape of CO2 from aquifers, Energy Conversion and Management, 38, 235-240, 1997.
〔21〕Chadwick, R. A., Zweigel, P., Gregersen, U., Kirby, G. A., Holloway, S., Johannessen, P.N., Geological reservoir characterization of a CO2 storage site: the Utsira sand, Sleipner, northern North Sea, Energy, 29, 1371-1381, 2004.
〔22〕Qi, D., Zhang, S., Su, K., Risk assessment of CO2 geological storage and the calculation of storage capacity, Petroleum Science and Technology, 28, 979-986, 2010.
〔23〕Klusman, R. W., Evaluation of leakage potential from a carbon dioxide EOR/sequestration project, Energy Conversion and Management, 44, 1921-1940, 2003.
〔24〕林鎮國,二氧化碳的儲存,科學發展,413,28-33,2007。
〔25〕林殿順,台灣二氧化碳地質封存潛能及安全性,經濟前瞻,132, 93-97,2010。
〔26〕林國安、吳榮章、余輝龍、宣大衡,二氧化碳地下封存技術與展望,鑛冶,52(2),17-33,2008。
〔27〕呂明達,宣大衡,黃雲津,范振暉,台灣陸上二氧化碳地質封存潛能推估,鑛冶,52(3),154-161,2008。
〔28〕范振暉,宣大衡,以地下封存方式進行二氧化碳減量之可行性探討,第二屆資源工程研討會論文集,278-283,2005。
〔29〕Gier, S., Worden, R. H., Johns, W. D., Kurzweil, H., Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria, Marine and Petroleum Geology, 25, 681-695, 2008.
〔30〕Siriwardane, H., Haljasmaa, I., McLendon, R., Irdi, G., Soong, Y., Bromhal, G., Influence of carbon dioxide on coal permeability determined by pressure transient methods, International Journal of Coal Geology, 77, 109-118, 2009.
〔31〕Jasinge, D., Ranjith, P. G., Choi, S. K., Effects of effective stress changes on permeability of latrobe valley brown coal, Fuel, 90, 1292-1300, 2011.
〔32〕David, C., Wong, T. F., Zhu, W., Zhang, J., Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust, Pure and Applied Geophysics, 143, 425-456, 1994.
〔33〕Nichols, G., Sedimentary and stratigraphy, Wiley-Blackwell, 419p, 2009.
〔34〕Athy, L. F., Density, porosity and compaction of sedimentary rocks, American Association of Petroleum Geologists Bulletin, 14, 1-24, 1930.
〔35〕Pettijohn, F. J., Potter, P. E., Siever, R., Sand and sandstone, Springer - Verlag, New York, 553p, 1987.
〔36〕Dodge, M. M. and Loucks, R. G., Mineralogic composition and diagenesis of Tertiary sandstones along Texas Gulf Coast, American Association of Petroleum Geologists Bulletin, 63, 440, 1979.
〔37〕McKinley, J. M., Atkinson, P. M., Lloyd, C. D., Ruffell, A. H., Worden, R. H., How porosity and permeability vary spatially with grain size, sorting, cement volume, and mineral dissolution In fluvial Triassic sandstones: the value of geostatistics and local regression, Journal of Sedimentary Research, 81, 844-858, 2011.
〔38〕Worden, R. H. and Barclay, S. A., The effect of oil emplacement on diagenetic clay mineralogy: the Upper Jurassic Magnus Sandstone Member, North Sea, Special Publication of the International Association of Sedimentologists, 34, 453-469, 2003.
〔39〕Wilkinson, M., Haszeldine, R. S., Fallick, A. E., Odling, N., Stoker, S. J., Gatliff, R. W., CO2–mineral reaction in a natural analogue for CO2 storage–implications for modeling, Journal of Sedimentary Research, 79, 486-494, 2009.
〔40〕Mørk, M. B. E. and Moen, K., Compaction microstructures in quartz grains and quartz cement in deeply buried reservoir sandstones using combined petrography and EBSD analysis, Journal of Structural Geology, 29, 1843-1854, 2007.
〔41〕Umar, M., Friis, H., Khan, A. S., Kassi, A. M., Kasi, A. K., The effects of diagenesis on the reservoir characters in sandstones of the Late Cretaceous Pab Formation, Kirthar Fold Belt, southern Pakistan, Journal of Asian Earth Sciences, 40, 622-635, 2011.
〔42〕Schmid, S., Worden, R. H., Fisher, Q. J., Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland, Marine and Petroleum Geology, 21, 299-315, 2004.
〔43〕Storvoll, V., Bjørlykke, K., Karlsen, D., Saigal, G., Porosity preservation in reservoir sandstones due to grain-coating illite: a study of the Jurassic Garn Formation from the Kristin and Lavrans fields, offshore Mid-Norway, Marine and Petroleum Geology, 19, 767-781, 2002.
〔44〕Selley, R. C., Applied Sedimentology, Academic Press, 523p, 2000.
〔45〕Coskun, S. B., Wardlaw, N. C., Haverslew, B., Effects of composition, texture and diagenesis on porosity, permeability and oil recovery in a sandstone reservoir, Journal of Petroleum Science and Engineering, 8, 279-292, 1993.
〔46〕Poursoltani, M. R., Gibling, M. R., Composition, porosity, and reservoir potential of the Middle Jurassic Kashafrud Formation, northeast Iran, Marine and Petroleum Geology, 28, 1094-1110, 2011.
〔47〕Worden, R. H. and Burley, S. D., Sandstone diagenesis: the evolution of sand to stone, in Sandstone Diagenesis: Recent and Ancient (eds S. D. Burley and R. H. Worden), Blackwell Publishing, 1-44, 2009.
〔48〕何春蓀,普通地質學,國立編譯館,共751頁,1989。
〔49〕Worden, R. H. and Morad, S., Clay minerals in sandstones: controls on formation, distribution and evolution, Special Publication of the International Association of Sedimentologists, 34, 3-41, 2003.
〔50〕Hakimi, M. H., Shalaby, M. R., Abdullah, W. H., Diagenetic characteristics and reservoir quality of the Lower Cretaceous Biyadh sandstones at Kharir oilfield in the western central Masila Basin, Yemen, Journal of Asian Earth Sciences, 51, 109-120, 2012.
〔51〕Schmidt, V., McDonald, D. A., Secondary reservoir porosity in the course of sandstone diagenesis, AAPG Continuing Education Course Note Series 12, 125p, 1979.
〔52〕Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., Wu, Y. H., Sone, H., Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A, International Journal of Rock Mechanics & Mining Sciences, 47, 1141-1157, 2010.
〔53〕余允辰,台灣西北部麓山帶沉積岩的孔隙率-滲透率曲線與微觀構 造,國立中央大學,碩士論文,2011。
〔54〕Tanikawa, W., Shimamoto, T., Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks, International Journal of Rock Mechanics and Mining Sciences, 46, 229-238, 2009.
〔55〕Battistutta, E., Hemert, P. V., Lutynski, M., Bruining, H., Wolf, K.-H., Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal, International Journal of Coal Geology, 84, 39-48, 2010.
〔56〕Weniger, P., Kalkreuth, W., Busch, A., Krooss, B. M., High-pressure methane and carbon dioxide sorption on coal and shale samples from the Parana Basin, Brazil, International Journal of Coal Geology, 84, 190-205, 2010.
〔57〕Nesse, W. D., Introduction to optical mineralogy, Oxford University Press, 335p, 1991.
〔58〕常麗華、陳曼雲、金巍、李世超、于介江,透明礦物薄片鑑定手冊,地質出版社,共258頁,2006。
〔59〕MacKenzie, W. S. and Adams, A. E., A colour atlas of rocks and minerals in thin section, Manson Publishing, 192p, 1994.
〔60〕Inman, D. L., Measures for describing the size distribution of sediments, Journal of Sedimentary Petrology, 22, 125-145, 1952.
〔61〕Powers, M. C., A new roundness scale for sedimentary particles, Journal of Sedimentary Petrology, 23, 117-119, 1953.
〔62〕Reed, S. J. B., Electron microprobe analysis and scanning electron microscopy in geology, Cambridge University Press, 189p, 2005.
〔63〕Krinsley, D. H., Pye, K., Boggs, S. J., Tovey, N. K., Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks, Cambridge University Press, 193p, 1998.
〔64〕Severin, K. P., Energy Dispersive Spectrometry of Common Rock Forming Minerals, Kluwer Academic Publishers, 228p, 2004.
〔65〕Deer, D. A., Howie, R. A., Zussman, J., An introduction to the rock-forming minerals, Longman, 696p, 1992.