| 研究生: |
陳勁誠 Jin-Cheng Chen |
|---|---|
| 論文名稱: |
膝關節軟骨MRI影像之邊界辨識與三維模型重建探討 Image Segmentation and Three-Dimensional Surface Reconstruction of Knee Cartilage for MRI Images |
| 指導教授: |
賴景義
Jiing-Yih Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 影像分割 、等階集合法 、主動輪廓模型 、膝關節軟骨 |
| 外文關鍵詞: | Active contour model, Level set Method, Image segmentation, Knee cartilage |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
影像物件分割技術可以將器官或組織的輪廓描述出來,可以針對這些區域做特徵的分析,提供醫師或研究人員做為他們診斷或研究時的依據,本研究的主要目標是使用退化性膝關節炎患者的核磁共振影像作為研究對象,然而,在實際運用於醫學影像上的分析,則會產生重大的缺陷與情形(如雜訊敏感度、過度分割、邊界模糊或非均質區域的影響),我們使用影像濾波器進行前置處理,並依據Chan-Vese模式的等階集合法做影像分割,透過區域限制與分層區域限制進行最佳化,將影像序列中關節軟骨予以分割並提供相關的量化資訊(厚薄度和體積資訊)提供給臨床醫師作為術前評估,另一方面透過三維重建的技術也提供病患觀看實際患部受損情形,增加醫師與病患之間雙向的溝通。
The image segmentation technology can describe the contours of the organ or the structures. It can make the analysis of the characteristic to these areas, and offer to a doctor or the researchers in order to diagnose or study basis. The main target of this research is the use of degenerative knee Magnetic resonance imaging of patients as research subjects. However, when applied to medical image analysis, it has important drawbacks (ex:sensitivity to noise, over-segmentation, fuzzy boundary or the impact of non-homogeneous regions). We use the image pre-processing filter, and Chan-Vese model based Level set method of image segmentation, through the regional limitations and restrictions on the best stratification of the region. Image sequence will be divided in the articular cartilage and provide relevant quantitative information (thickness and volume of information) available to clinicians as a preoperative evaluation. On the other hand, through the three-dimensional reconstruction of the technology also provides patients with damage to watch the actual affected area where increase between physicians and patients with two-way communication.
[1] Y. Chi, P. Cashman, R. Kitney “Automatic Segmentation of Cartilage in MR Images using CDCG: Chessboard Directional Compensated GVF Snakes”, International Conference on Medical Information Visualisation (MediVis 06), London, 2006, In: Clapworthy,G., Moore,G., editor, Los Alamitos, CA, IEEE Computer Society, 2006, Pages: 45 – 50.
[2] J. A. Lynch, S. Zaim, J. Zhao, A. Stork, C. G. Peterfy, and H. K. Genant,“Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours,” in Proc. SPIE, 2000.
[3] A. Losch, F. Eckstein, M. Haubner, and K. H. Englmeier , “A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI. Part 1: Development of a computational method,” Magn. Reson. Imaging, vol.15, no. 7, pp. 795-804, 1997.
[4] J. Carballido,Gamio, “MRI quantification of cartilage of the knee,”PhD thesis, University of California, San Francisco,2005.
[5] J. A. Lynch, S. Zaim, J. Zhao, C.G. Peterfy, and H.K. Genant,
“Automating measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and
segmentation,” In Proc. SPIE’01, pp. 431-439, 2001.
[6] S. Solloway, C. Hutchinson, J. Waterton, and C. Taylor, “The use of
active shape models for making thickness measurements of articular
cartilage from MR images,” Magnetic Resonance in Medicine, vol. 37,no. 6, pp. 943–952, 1997.
[7] S. Solloway, C. J. Taylor, C. E. Hutchinson, and J. C. Waterton,
“Quantification of articular cartilage from MR images using active shape models,” in Proceedings 4th European Conference on Computer Vision-Volume II ’96, pp. 400-411. Springer-Verlag, 1996.
[8] T. Stammberger, F. Eckstein, M. Michaelis, K. H. Englmeier, and M. Reiser, “Interobserver reproducibility of quantitative cartilage
measurements: comparison of B-spline snakes and manual segmentation,” Magn. Reson. Imag., vol. 17, no. 7, pp. 1033–1042, 1999.
[9] Z. A. Cohen, D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarsi, E. J. Ciaccio, and G. A. Ateshian, “Knee cartilage topography, thickness, and contact areas from MRI: In-vitro calibration and in-vivo measurements,” Osteoarthritis and Cartilage, vol. 7, pp. 95–109, 1999.
[10] J. P. Raynauld, C. Kauffmann, G. Beaudoin, M. J. Berthiaume, J. A. deGuise, D. A. Bloch, F. Camacho, B. Godbout, R. D. Altman, M.
Hochberg, J. M. Meyer, G. Cline, J. P. Pelletier, and J.Martel-Pelletier,“Reliability of a quantification imaging system using magnetic resonance images to measure cartilage thickness and volume in human normal and osteoarthritic knees,” Osteoarthritis and Cartilage, vol.11, no. 5, pp. 351–360, May 2003.
[11] T. Kapur, P. Beardsley, S. Gibson, W. Grimson, and W. Wells, “Model-based segmentation of clinical knee MRI,” in IEEE International Workshop on Model-Based 3D Image Analysis ’98, pp. 97-106, 1998.
[12] T. Kapur, “Model Based Three Dimensional Medical Image Segmentation, ” PhD thesis, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, May 1999.
[13] C. D. Pirnog, “Articular Cartilage Segmentation and Tracking in
Sequential MR Images of the Knee, ” PhD dissertation, Swiss Federal Institute of Technology Zurich, 2005.
[14] W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction algorithm”,Computer Graphics,Vol. 21, No. 4, pp. 163-169, 1987.
[15] David, M. & Eisenberg, M.D. “Courses Involving Complementary and Alternative Medicine at US Medical Schools”. The Journal of American Medical Association, 280, 784-787,1998.
[16] Zhang, Y., Xu.﹐Nevitt, L., M. C., Aliabadi., P., Yu.﹐& Qin., W. M. “Comparison of the Prevalence of Knee Osteoarthritis Between the Elderly Chinese Population in Beijing and whites in the United States: the Osteoarthritis Study. ” Annals of Rheumatic Disease, 44(9), 206-207,2001.
[17] Felson, D. T., Lawrence, R. C., Hochberg, M. C., McAlindon, T., & Dieppe, P. A. et al. “Osteoarthritis: New Insights: Part 2: Treatment Approaches. ” Annals of Internal Medicine,133(9), 726-737,2000.
[18] Messier, S. P., Loeser, R. F., Mitchell, M. N., Valle, G., Morgan T. P., Rejeski, W. J. “Exercise and weight loss in Obese Old Adults with Knee Osteoarthrit is: a Preliminary study. ” The Journal of American Geriatric, 48, 1062-1072, 2000.
[19] Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C and Cielpeau C. “Distribution of bone mineral density at the proximal tibia in knee osteoarthritis. ” Calcif Tissue Int, 71(4):315-22,2000.
[20] Williams, A. “Therapeutic landscapes in holistic medicine.” Social Science and Medicine, 46(9), 1193-1203,1998.
[21] Osher, S. and J. A. Sethian, “Fronts Propagating with Curvature Dependent Speed: Algorithms based on the Hamilton-Jacobi formulation. ”Journal of Computational Physics(S0021-9991), 1998,79(1): 12-49.
[22] D. Adalsteinssion, J. A. Sethian. “The Fast Construction of Extension Velocities in Level Set Methods”. Journal of Computational Physics(S0021-9991), 1999, 148(1): 2-22.
[23] Sussman, M., Smereka, P., and Osher, s., “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows”. Journal of Computational Physics. 114,146-159(1994).
[24] D.Mumford and J. Shah, “Optimal approximation by piecewise smooth functions and associated variational problems,” Commun. Pure Appl. Math, vol. 42, pp. 577–685, 1989.
[25] Chan, T. and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Processing,vol.10, pp.266-277, Feb. 2001.
[26] Osher, S. and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi
formulation,” Journal of Computational Physics, vol.79, pp.12-49, 1988.
[27] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, “A variational level set approach to multiphase motion,” Journal of Computational Physics., vol. 127, pp.179–195, 1996.
[28] S. K. Mitra, H. Li, I. S. Lin, and T.-H. Yu, “A new class of nonlinear filters for image enhancement,” in Proc. IEEE Int. Conf: Acoust, Speech Signal Processing, Toronto, Ont., Canada, 1991, pp. 2525-2528.
[29] Fisher , R., S. Perkins, A. Walker and E. Wolfart, “Hypermedia Image Processing Reference, ”Artificial Intelligence, the University of Edinburgh. 2000.
[30] 陳金徽, “數位影像輻射品質之客觀指標評估, ”國立成功大學地球科學研究所碩士論文, 2006.
[31] Jenny Folkesson, Erik B. Dam, Ole F. “Segmenting Articular Cartilage Automatically Using a Voxel Classification Approach,” IEEE Transactions on Medical Image, vol. 26, no. 1, 2007.
[32] S. K. Warfield, M. Kaus, F. A. Jolesz, and R. Kikinis, “Adaptive,template moderated, spatially varying statistical classification,” Med.Image Anal., no. 4, pp. 43–55, 2000.
[33] S. K. Warfield, C. Winalski, F. A. Jolesz, and R. Kikinis, “Automatic segmentation of mri of the knee,” presented at the ISMRM 6th Sci.Meeting Exhibition, Sydney, Australia, Jul. 1998.
[34] K. Li, S. Millington, X. Wu, D. Z. Chen, and M. Sonka, “Simulta-
neous segmentation of multiple closed surfaces using optimal graph
searching,” in Information Processing in Medical Imaging: 19th International Conference. New York: Springer, 2005, vol. 3565.
[35] S.Millington, K. Li, X.Wu, S. Hurwitz, andM. Sonka, “Automated simultaneous 3-D segmentation of multiple cartilage surfaces using optimal graph searching on mri images,” Osteoarthritis Cartilage, vol.13, 2005.
[36] V. Grau, A.Mewes,M. Alcaiz, R. Kikinis, and S.Warfield, “Improvedwatershed transform for medical image segmentation using prior in-formation,” IEEE Trans. Med. Imag., vol. 23, no. 4, pp. 447–458, Apr.2004.
[37] S. K. Pakin, J. G. Tamez-Pena, S. Totterman, and K. J. Parker, “Segmentation, surface extraction and thickness computation of articular cartilage,” Proc. SPIE Med. Imag. Process, vol. 4684,pp. 155–166, 2002.
[38] J. G. Tamez-Pena, M. Barbu-McInnis, and S. Totterman, “Knee cartilage extraction and bone-cartilage interface analysis from 3-D mri data sets,” Proc. SPIE Med. Image Process, vol. 5370,pp. 1774–1784, 2004.
[39] 羅亞惟, “溫泉浴療介入退化性膝關節炎患者有關之研究, ”國立臺北護理學院旅遊健康研究所碩士班碩士論文,2006.
[40] 丁筠倪, “以3D電腦斷層掃描及磁振造影術進行新骨再生能力之評估,”義守大學生物醫學工程系碩士班碩士論文,2006.
[41] Wikipedia ,http://en.wikipedia.org/wiki/Magnetic_Resonance_
Imaging.
[42] 羅賴鈞,“醫學影像之三維顯示與骨組織三角網格重建技術探討,”國立中央大學機械工程學系碩士班碩士論文,2009.