| 研究生: |
呂學燁 Hsueh-Yeh Lu |
|---|---|
| 論文名稱: |
利用快速熱退火處理方式改善太陽能電池之金屬與薄膜接面電性 Use rapid thermal annealing process to improve the contact between the metal electrode and a-Si:H film of solar cell. |
| 指導教授: |
張正陽
JHENG-YANG CHANG |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 非晶矽薄膜 、太陽能電池 、快速熱退火 |
| 外文關鍵詞: | a-Si:H film, solar cell, rapid thermal annealing |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫化非晶矽(a-Si:H)薄膜為一短程有序的結構,具有製程簡單、成本低廉與可大面積製作等特性,因此常被應用於半導體元件和薄膜太陽能電池,然而該材料其晶體結構缺陷較多,故導致非晶矽太陽能電池轉換效率低於結晶矽太陽能電池。針對太陽能電池其結構及材料特性的改善,以有效提升轉換效率為當前重要的研究議題。
本實驗主要利用電漿輔助化學氣相沈積系統(Plasma Enhanced Chemical Vapor Deposition, PECVD)製備各層薄膜與太陽能電池(結構為glass/ITO/p-i-n/Ag )。本實驗主要分為兩個重點討論:一為針對元件內部的多層結構,適度改變本質(i)層厚度以探討太陽光的吸收效應。實驗結果發現厚度在440 nm至620 nm間,以530 nm之 i 層厚度對太陽能電池之吸收(轉換)效率最佳。次為利用快速熱退火(Rapid Thermal Annealing)的製程方式,使金屬電極與非晶矽薄膜間產生歐姆接觸以降低其接面間的電阻,進而改善其電性問題,另外根據文獻指出,非晶矽薄膜經由快速熱退火處理方式可以消除材料表面的懸浮鍵,可將太陽能電池做鈍化處理,以降低載子在表面發生再結合的機率。實驗數據顯示未經過熱退火處理之薄膜與金屬接觸電阻 RC(Contact Resistance)為17.11 kΩ、太陽能電池之串聯電阻 RS(Series Resistance)與並聯電阻 Rsh(Shunt Resistance)分別為170.5 Ω與2232.6 Ω及太陽能電池效率為3.161%;經溫度300oC、時間2分鐘的熱退火製程處理,其接觸電阻 RC與串聯電阻 RS值分別降為6.325 kΩ與114.8 Ω、並聯電阻 Rsh增加為3771.5 Ω,並提升太陽能電池效率至3.784%。
The hydrogenated amorphous silicon (a-Si:H) structure with a short range order; it has simple fabrication process, low cost, and large area. It has been extensively used in semiconductor components and thin film solar cells. However, the conversion efficiency of the a-Si:H solar cell is much lower than the crystalline silicon solar cell due to the much higher defects. Improving the conversion efficiency of a-Si:H solar cells by structures or materials is an important issue. We deposit a-Si:H thin films and corresponding solar cells (with structure of glass/ITO/p-i-n/Ag) by PECVD(Plasma Enhanced Chemical Vapor Deposition, PECVD).
This thesis is divided into two issues. First is the influence of thickness of a-Si:H i layer while the other parameters are kept identical. Because the thickness of i layer decides the absorption of sunlight and electronics properties in the solar cell, we probe the thickness effect of i layer from 440nm to 620nm. We find that the optimized i layer thickness is 530nm. Second, the contact between the metal electrode and a-Si:H film is improved by thermal anneal process in relatively low temperature. The series resistance of solar cells is lower after the thermal anneal process; we conclude that a ohmic contact forms between metal electrode and a-Si:H film. Additionally, the dangling bond at surface of a-Si:H film can be eliminated through the rapid annealing process; the passivation process lowers the recombination rate of free carriers at interfaces. The contact resistance (RC) between the metal electrode and a-Si:H film reduces to 17.11kΩ from 6.325kΩ and the series resistance (RS) of the solar cells reduces to 114.8Ω from 170.5Ω and the shunt resistance (Rsh) of the solar cells increase to 3771.5Ω from 2232.6Ω with the temperature anneal process at 300°C in 2 minutes; meanwhile the conversion efficiency increases to 3.784% from 3.161%.
參考文獻
[1] 楊錦章譯,"基礎濺鍍電漿",電子發展月刊,第68 期,13(1983)
[2] 陳陵援、吳慧眼,"儀器分析",三民書局,99(2002)
[3] J. M. Seo, M. C. Jeong, and J. M. Myoung,"Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering", J. Cryst. Growth(2006)
[4] 吳國禎,分子振動光譜學概論(2001)
[5] 施敏,半導體元件物理與製作技術第二版,國立交通大學出版社(1980)
[6] Schuegraf, Klaus K. ed,"Thin Film Deposition Process and Techniques", Park Ridge, NJ/Noyes Publications(1988)
[7] John Robertson, Appl. Phys. Lett 87, 5(1999)
[8] R.A. Street, Phys. Rev. B 43, 2454(1991), R.A. Street, Phys. Rev. B 44, 10610(1991)
[9] 趙學禮,非晶矽太陽能電池之材料成長、元件製作及特性分析,國立中央大學物理研究所碩士論文(2007)
[10] 林明獻,「太陽能電池技術入門」,全華科技圖書股份有限公司印行(2008)
[11] Yongqian Wang, Xianbo Liao, Zhixun Ma, Guozhen Yue, Hongwei Diao, Jie He, Guanglin Kong, Yuwen Zhao, Zhongming Li, Feng Yun, "Solid-phase crystallization and dopant activation of amorphous silicon films by pulsed rapid thermal annealing", Applied Surface Science(1998)
[12] 莊嘉琛,「太陽能工程-太陽電池篇」, 全華科技圖書股份有限公司印行(2007)
[13] D. Staebler and C. Wronski, "Reversible conductivity changes in discharge-produced amorphous Si", Appl. Phys. Lett. 31, 292 (1977)
[14] A.J. Lewis, G. A.N Conneil, W. Paul and J.R. Pawlik, Proc.Int. Conf. Tetrally Bouded Amorphous Semiconductor, American Institute of Physics, New York 27(1974)
[15] Thin Film Solar Cell, Edited by J.Poortmans and V. Arkhipov, IMEC, Leuven, Belgium, CH5
[16] R.A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, New York(1991)
[17] Y.S. Tsuo, W. Juft, Appl. Phys. Commun. 10(1990) 71
[18] Donald A. Neamen, "Semiconductor Physics and Devices", 3rd edition, McGraw-Hill, New Delhi( 2003)
[19] S.O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall, Upper Saddle River, NJ(2001)
[20] D. Beeman, Tsu, and M.F. Tporpe, Phys. Rev. B 32,874(1985)
[21] A. Szekeres, M. Gartner, F. Vasiliu, M. Marinov, G. Beshkov, "Crystallization of a-Si:H films by rapid thermal annealing", Journal of Non-Crystalline Solids, 227–230(1998)954–957
[22] L.M. Portera, A. Teicher, D.L. Meier, "Phosphorus-doped, silver-based pastes for self-doping ohmic contacts for crystalline silicon solar cells", Solar Energy Materials & Solar Cells 73(2002) 209–219
[23] S. Acco D. L. Williamson P. A. Stolk PHYSICAL REVIEW B 15 VOLUME 53, NUMBER 8 FEBRUARY 1996-II(1996)
[24] Yoon J.-H Solid State Communications, Volume 124, Number 8, , pp. 289-292(4) November (2002)
[25] Minsung Jeon*, Shuhei Yoshiba, Koichi Kamisako, "Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various
temperatures using RF remote-PECVD technique", Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
[26] 林大惟,矽量子點氮化矽薄膜應用於矽基太陽能電池抗反射層之研究,國立中央大學光電科學研究所碩士論文(2008)
[27] 張簡敬軒,白金量子點光電化學太陽能電池之特性研究,國立中央大學材料科學與工程研究所研究所碩士論文(2008)