| 研究生: |
莊蕙如 Hui-ju Chuang |
|---|---|
| 論文名稱: |
利用掃描式電子穿隧顯微鏡觀察汞薄膜電極上鎳、鈷的電沉積及硫酸氫根離子的吸附 In-situ Scanning Tunneling Microscopy study the electrodeposition of nickel and cobalt and the adsorption of bisulfate anions on mercury film electrode. |
| 指導教授: |
姚學麟
Shueh-lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 掃描式電子穿隧顯微鏡 |
| 外文關鍵詞: | In-situ Scanning Tunneling Microscopy |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用掃描式電子穿隧顯微鏡(In-situ Scanning Tunneling Microscopy, STM)及循環伏安儀(Cyclic Voltammetry, CV)來探討汞薄膜電極上鎳、鈷的電沉積及硫酸氫根離子的吸附。
根據先前的研究,發現在0.1 M 過氯酸溶液沉積1~2層汞於鉑(111)上時,當電位由0.3 V向負電位移動至0.1 V,表面上的汞膜有剝落的情況產生;可是在同樣條件下,當載體置換成銥(111)電極時,卻無此情況產生,因此,我們想試著將陰離子改變成硫酸氫根時,在同樣沉積1~2層汞於鉑(111)及銥(111)兩種不同載體的情況下,會不會同樣有汞膜剝落的情況產生。首先,在0.5 M硫酸溶液中,當沉積1~2層汞膜於鉑(111)載體上時,我們可觀察到三種結構:分別在0.2~0.25 V觀察到4×5的結構,覆蓋度為0.05;在0.25~0.35 V觀察到3×2√3及3×√13的結構,覆蓋度皆為0.166;而當電位繼續往正電位移動時,表面結構會漸漸由整齊趨向不整齊,另外,將電位由0.3 V向負電位移動至0.1 V時,發現汞膜並無剝落的情況產生;然後我們再將汞膜的厚度提高至10層,發現無論在甚麼電位,皆無整齊結構產生,而鉑-汞的原子堆疊方式為moire patterns。但在相同條件下,我們將載體換成銥(111),發現無論是沉積1~2層或是10層的汞膜,皆無整齊結構產生,我們再將電位由0.3 V向負移動至0.1 V時,表面上的汞膜同樣無剝落的情況產生,而其銥-汞的原子堆疊方式為striped phase。另外,我們分別就陰離子、汞膜厚度和載體與汞間的原子堆疊方式來討論其結構的差異。
第二部分的實驗為探討汞薄膜電極上鎳、鈷的電沉積,我主要針對不同的電解質溶液來觀察其電化學行為:(1)在0.1 M 過氯酸鉀溶液中加入1 mM 的金屬(過氯酸鎳與過氯酸鈷)溶液;(2)在0.1 M 過氯酸鉀和0.01 M硼酸溶液中加入1mM 的金屬(過氯酸鎳與過氯酸鈷)溶液;(3) 在0.1 M 過氯酸鉀和1 mM碘化鉀溶液中加入1 mM 的金屬(過氯酸鎳)溶液;(4) 在0.1 M 過氯酸鉀和1 mM氯化鉀溶液中加入1 mM 的金屬(過氯酸鎳)溶液,由結果可看出,不同的電解質溶液將會影響其電化學行為,另外,根據實驗結果,我推測鈷與汞之間有合金產生。
In-situ Scanning Tunneling Microscopy (In-situ STM) and Cyclic Voltammetry (CV) are used to study the electrodeposition of nickel and cobalt and the adsorption of bisulfate anions on mercury film electrode.
According to previously research, when 1~2 layers Hg deposits on Pt(111) in 0.1 M perchloric acid, the potential was changed progressively negative from 0.3 V to 0.1 V, therefore, we have tried to conduct the same experiment in sulfuric acid on Pt(111) and Ir(111) to see whether the mercury film has the flaking situation production or not. First, when 1~2 layers Hg deposit on Pt(111) in 0.5 M sulfuric acid, we can find three ordered structure: when the potential from 0.2 V to 0.25 V, structure (4×5) ,θ= 0.05 was shown here, and then the potential was changed from 0.25 V to 0.35 V, here show the two structure (3×2√3) and (3×√13),θ= 0.166, finally, the potential was changed progressively positive, the structure was changed from order to disorder. Pt-Hg adatoms is moire patterns at 0.1~0.5 V. When the potential was changed progressively negative from 0.3 V to 0.1 V, the structure of mercury film was not changed. Finally, when >10 layers Hg deposit on Pt(111), no ordered structure appear from 0.1 V to 0.5 V. Use Ir(111) as substrate, no ordered structure appear in monolayer or multilayers Hg film. Ir-Hg adatoms is striped phase at 0.1~0.5 V. When the potential was changed progressively negative from 0.3 V to 0.1 V, mercury film was not changed. Then, we discuss the structure different from the anions, mercury film thickness and the substrate.
Second part, we study the electrodeposition of nickel and cobalt on mercury film electrode. Mainly aims at the different electrolyte solution to observe its electrochemistry behavior. (1) in 0.1 M potassium perchlorate solution add 1 mM metal solution (nickel perchlorate or cobalt percholrate), (2) in 0.1 M potassium perchlorate solution add 0.01 M boric acid and 1 mM metal solution (nickel perchlorate or cobalt percholrate), (3) in 0.1 M potassium perchlorate solution add 1 mM potassium iodine and 1 mM metal solution (nickel perchlorate), (4) in 0.1 M potassium perchlorate solution add 1 mM potassium chlorine and 1 mM metal solution (nickel perchlorate). The different electrolyte solution will affect its electrochemistry behavior, I extrapolated that between the cobalt and the mercury will have the alloy production.
1-6、參考文獻︰
(1) Analytical insight, UNSW school of chemistry.
(2) Florence, T. M. J. Electroanal. Chem. 1970, 273.
(3) Baird, C. Environmental Chemistry, 381 – 382.
(4) Sawamoto, H. J. Electroanaly. Chem. 1997, 432, 153.
(5) Bordi, S.; Papeschi, G. J. Electroanaly. Chem. 1969, 20, 297.
(6) Tadjeddine, A.; Rahmani, A. Electrochim. Acta 1991, 36, 1855.
(7) Daly, P. J.; Page, D. J.; Compton, R. G. Anal. Chem. 1983, 55, 1191.
(8) Wang, J.; Tian, B.; Jiang, M. Anal. Chem. 1997, 69, 1657.
(9) Inukai, J.; Sugita, S.; Itaya, K. Journal of Electroanalytical Chemistry 1996, 403,159.
(10) Martins, M. E.; Salvarezza, R. C.; Arvia, A. J. Electrochimica Acta 1998, 43, 549.
(11) Kounaves, S. P.; Buffle, J. J. Electroanaly. Chem. 1987, 216, 53.
(12) Kounaves, S. P.; Buffle, J. J. Electroanaly. Chem. 1988, 239, 113.
(13) Galletto, P.; Loridant, S.; Antoine, R.; Brevet, P. F.; Girault, H. H. Journal of Electroanalytical Chemistry 2000, 487, 16.
(14) Magnussen, O. M.; Ocko, B. M.; Deutsch, M.; Regan, M. J.; Pershan, P. S.; Abernathy, D.; Grubel, G.; Legrand, J. F. Nature 1996, 384, 250
(15) Huisman, W. J.; Peter, J. F.; Zwanenburg, M. J.; de Vries, S. A.; Derry, T. E.; Abernathy, D.; van der Veen, J. F. Nature 1997, 390, 379.
(16) Park, J. K.; Kahng, S. J.; Ham, U. D.; Kuk, Y.; Miyake, K.; Hata, K.; Shigekawa, H. Phys. Rev. B 1999, 60, 16934.
(17) Raviswaran, A.; Liu, C.-P.; Kim, J.; Cahill, D. G.; Gibson, J. M. Phys. Rev. B 2001, 63, 125314.
(18) Crown, A.; Moraes, I. R.; Wieckowski, A. J. Electroanal. Chem. 2001, 500, 333.
(19) Sieradzki, K.; Brankovic, S. R.; Dimitrov, N. Science 1999, 284, 138.
(20) Bittner, A. M.; Wintterlin, J.; Ertl, G. Surface Science 1997, 376, 267.
(21)田福助,電化學-理論與應用,高立圖書有限公司,台灣(1987)
(22)Holler, F. J.; Skoog, D. A.; Crouch, S. R. Principles of Instrumental Analysis, Thomson, 5th, 2007.
(23)Atkins, P.; Paula, J. Physical Chemistry.7th .
3-4、參考文獻︰
(1) Ocko, B. M.; Wang, J.; Melendres, C. A.; Tedjeddine, A. Synchrotron Techniques in Interfacial Electrochemistry; Kluwer: Dordrecht, 1994.
(2) Gewirth, A. A.; Niece, B. K. Chem. Rev. 1997, 97, 1129.
(3) Shingaya, Y.; Ito, M.; Wieckowski, A. Interfacial electrochemistry; Marcel Dekker: New York, 1999.
(4) Sawatari, Y.; Sueoka, T.; Shingaya, Y.; Ito, M.; Osamura, Y. Spectrochim. Acta A 1994, 50, 1555.
(5) Ogasawara, H.; Sawatari, Y.; Inukai, J.; Ito, M. J. Electroanal. Chem. 1993, 358, 337.
(6) Nart, F. C.; Iwashita, T.; Weber, M. Electrochim. Acta 1994, 39, 961.
(7) Funtikov, A. M.; Linke, U.; Stimming, U.; Vogel, R. Surface Science 1995, 324, 343.
(8) Funtikov, A. M.; Linke, U.; Stimming, U.; Vogel, R. J. Electroanal. Chem. 1997, 428, 147.
(9) Kranskorf, E. K.; Rice, L. M.; Wieckowski, A. J. Electroanal. Chem. 1988, 244, 347.
(10) Zelenay, P.; Horanyi, G.; Rhee, C. K.; Wieckowski, A. J. Electroanal. Chem. 1991, 300, 499.
(11) Savich, W.; Sun, S.; Lipkowski, J.; Wieckowski, A. J. Electroanal. Chem. 1995, 388, 233.
(12) Wan, L. J.; Yau, S. L.; Itaya, K. J. Phys. Chem. 1995, 99, 9507.
(13) Magnussen, O. M.; Hagebock, J.; Hotlos, J.; Behm, R. J. Faraday Discuss. 1992, 94, 329.
(14) Edens, G. J.; Gao, X.; Weaver, M. J. J. Electroanal. Chem. 1994, 375, 357.
(15) Nishizawa, T.; Nakada, T.; Kinoshita, Y.; Miyashita, S.; Sazaki, G.; Komatsu, H. Surface Science 1996, 367, 73.
(16) Ataka, K.; Osawa, M. Langmuir 1998, 14, 951.
(17) Wilms, M.; Broekmann, P.; Kruft, M.; Park, Z.; Stuhlmann, C.; Wandelt, K. Surface Science 1998, 83, 402.
(18) Wilms, M.; Broekmann, P.; Stuhlmann, C.; Wandelt, K. Surface Science 1998, 416, 121.
(19) Li, W. H.; Nichols, R. J. J. Electroanal. Chem. 1998, 456, 153.
(20) Shingaya, Y.; Ito, M. J. Electroanal. Chem. 1999, 467, 299.
(21) Marinkovic, N. S.; Marinkovic, J. S.; Adzic, R. R. J. Electroanal. Chem. 1999, 467, 291.
(22) Wan, L. J.; Hara, M.; Inukai, J.; Itaya, K. J. Phys. Chem. B 1999, 103, 6978.
(23) Wan, L. J.; Suzuki, T.; Sashikata, K.; Okada, J.; Inukai, J.; Itaya, K. J. Electroanal.Chem. 2000, 484, 189.
(24) Marinkovic, N. S.; Wang, J. X.; Zajonz, H.; Adzic, R. R. J. Electroanal. Chem. 2000, 500, 388.
(25) Senna, T.; Ikemiya, N.; Ito, M. J. Electroanal. Chem. 2001, 511, 115.
(26) 中央大學化學系吳恆良碩士畢業論文, 2008.
4-4、參考文獻︰
(1) Gundel, A.; Cagnon, L.; Gomes, C.; Morrone, A.; Schmidt, J.; Allongue, P. Physical Chemistry Chemical Physics 2001, 3, 3330.
(2) Morin, S.; Lachenwitzer, A.; Möller, F. A.; Magnussen, O. M.; Behm, R. J. J. Electrochem. Soc. 1999, 146, 1013.
(3) Pons, S.; Mallet, P.; Veuillen, J.-Y. Phys. Rev. B 2001, 64, 193408.
(4) Grütter, P.; Dürig, U. T. Phys. Rev. B 1994, 49, 2021.
(5) Figuera, J. d. l.; Prieto, J. E.; Ocal, C.; Miranda, R. Phys. Rev. B 1993, 47, 13043.
(6) Stroscio, J. A.; Pierce, D. T.; Dragoset, R. A.; First, P. N. J. Vac. Sci. Technol. A 1992, 10, 1981.
(7) Yang, Y.-S.; Shu, C.-H.; Liao, C.-C.; Yau, S.-L. J. Electroanal. Chem. 2003, 556 53.
(8) Morin, S.; Lachenwitzer, A.; Magnussen, O. M.; Behm, R. J. Phy. Rev. Lett. 1999, 83, 5066.
(9) 中央大學化學系吳恆良碩士畢業論文, 2008.