跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王耀霆
Yao-ting Wang
論文名稱: 手徵超材料之研究
Research of chiral metamaterials
指導教授: 欒丕綱
Pi-gang Luan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 98
語文別: 中文
論文頁數: 55
中文關鍵詞: 超材料能量密度手徵超材料卡西米爾效應
外文關鍵詞: metamaterials, Casimir effect, energy density, chiral metamaterials
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,超材料的研究日新月異,各式各樣的研究主題如完美成像、光儲存器、幻象光學與人造黑洞等,無不引起了極大的注目和響應。本論文所探討的手徵超材料是一種特殊設計的人工結構。於 2004 年 John B. Pendry 提出後,相關的文章數量迅速累積。至今儼然已成為超材料領域一個獨立的分支。
    本論文探討的內容有:(1) 利用等效電路法計算手徵超材料的本構關係;(2) 利用電動力學法計算手徵材料中的能量密度形式,並和 SRR-Wires 超材料結構中的能量密度做比較;(3) 手徵材料的 Casirmir 效應的研究。
    尋找排斥性的 Casimir 力是現今的熱門的研究主題。去年起,Soukoulis 教授團隊發現,若適當選擇結構與材料參數,兩塊手徵超材料之間的 Casimir 力有可能成為排斥性的。此篇論文利用 Lifshitz 理論推導手徵超材料中 Casimir 能量與 Casimir 力,並與 Soukoulis 教授團隊的結果進行比較。根據我們的研究結果,我們認為手徵超材料並不能產生排斥性的 Casimir 力。
    期望本文的研究結果能對手徵材料研究做出一些貢獻。


    In these years, the researches related to metamaterials are revolutionary. Diversified topics, such as perfect imaging, light storage, illusion optics, and artificial black hole, cause great responses and attention. This thesis discusses that chiral metamaterials is an artificial structure which is designed specifically. Concerning papers grow speedily after Prof. John. B. Pendry mentioned in 2004. Nowadays, it’s an independent branch in the field of metamaterials.
    Content in this paper: (1) Calculate the constitutive relations of chiral metamaterials via equivalent circuit method; (2) Calculate the energy density of chiral metamaterials via electrodynamics method, and compare with energy density of SRR-Wires structure; (3) Do a research of Casimir effect in chiral media.
    Searching for repulsive Casimir force is a popular research topic. Last year Prof. Soukoulis discovered that if choosing structure and parameters of media properly, Casimir force between two chiral materials is possible to be repulsive. This thesis utilizes Lifshitz’s theory so as to derive Casimir force and energy in chiral material, and compares with result of Prof. Soukoulis’s group. However, we consider that chiral material is impossible to generate repulsive Casimir force from our research result.
    May this essay have significant contribution to works of chiral metamaterials.

    摘要 i Abstract ii 誌謝 iii 圖目錄 iv Chapter 1: 論文簡介 1 Chapter 2: 超材料研究回顧 4 2-1 雙負介質與隱形斗篷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2-2 光儲存器與人造黑洞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2-3 第二章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 3: 本構關係 8 3-1 超材料的本構關係推導. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3-2 手徵材料本構關係推導 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3-3 第三章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapter 4: 手徵材料的能量密度,群速度與相速度 15 4-1 超材料中的電磁能量密度. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4-2 手徵超材料中的電磁能量密度. . . . . . . . . . . . . . . . . . . . . . . . 17 4-3 第四章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 5: 手徵材料之Casimir效應 25 5-1 Casimir效應與真空電磁漲落. . . . . . . . . . . . . . . . . . . . . . . . . 25 5-2 Casimir-Lifshitz 能量公式. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5-3 手徵超材料之Casimir效應. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5-4 手徵Casimir效應的數值積分結果. . . . . . . . . . . . . . . . . . . . . 34 5-5 第五章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter 6: 總結與未來展望 38 6-1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6-2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Reference 40 附錄 I: 手徵Casimir效應的方程式推導 45 附錄 II: 手徵Casimir效應的解的詳細計算 49 附錄 III: Z轉換與手徵有限時域差分法 51

    [1] J. B. Pendry, Science. 1353, 306 (2004).
    [2] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B, 79, 035407 (2009)
    [3] Shuang Zhang, Yong-Shik Park, Jensen Li, Xinchao Lu, Weili Zhang, and Xiang Zhang, Phys. Rev. Lett., 102, 023901 (2009)
    [4] Makoto Kuwata-Gonokami, Nobuyoshi Saito, Yusuke Ino, Martti Kauranen, Konstantins Jefimovs, Tuomas Vallius, Jari Turunen and Yuri Svirko, Phys. Rev. Lett., 95, 227401 (2005)
    [5] E. Plum, V. A. Fedotov, and N. I. Zheludev, Appl. Phys. Lett., 93, 191911 (2008)
    [6] Jürgen Kästel, Michael Fleischhauer, Susanne F. Yelin, and Ronald L. Walsworth, Phys. Rev. Lett., 99, 073602 (2007)
    [7] R. Zhao,J. Zhou, Th. Koschny, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett., 103, 103602 (2009)
    [8] Justyna K. Gansel, Michael Thiel, Michael S. Rill, Manuel Decker, Klaus Bade, Volker Saile, Georg von Freymann, Stefan Linden, Martin Wegener, Science, 325, 1513 (2009)
    [9] E.M. Lifshitz and L.P. Pitaevskii, Course of Theoretical Physics Vol. 9: Statistic Physic Part 2, 3rd, P.338-347
    [10] Veysel Demir, Atef Z. Elsherbeni,, and Ercument Arvas, IEEE Trans. Antennas Propag., vol.53, no. 10, pp. 3374-3384, Jul. 2005.
    [11] Alejandro W. Rodriguez, Alexander P. McCauley, John D. Joannopoulos, and Steven G. Johnson, Phys. Rev. A 80, 012115 (2009)
    [12] Alexander P. McCauley, Alejandro W. Rodriguez, John D. Joannopoulos, and Steven G. Johnson, Phys. Rev. A 81, 012119 (2010)
    [13] V. G. Veselago, Soviet Physics Uspekhi Vol. 10, Number 4, 509 (1967)
    [14] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, Phys. Rev. Lett. 76, 25, 4773 (1996)
    [15] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans on Micro. Theory and Tech., Vol. 47, NO. 11, Nov. 1999 2075
    [16] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. Vol. 84, No. 18, 4184 (2000)
    [17] J. B. Pendry, Phys. Rev. Lett. Vol 85, No. 18, 3966 (2000)
    [18] N. Garcia, and M. Nieto-Vesperinas, Phys. Rev. Lett. Vol. 88, No. 20, 207403 (2002)
    [19] Zubin Jacob, Leonid V. Alekseyev and Evgenii Narimanov, Opt. Express, Vol. 14 No. 18, 8247
    [20] J. B. Pendry, D. Schurig, D. R. Smith, Science, 312, 1780 (2006)
    [21] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Science 314, 977 (2006)
    [22] Steven A. Cummer, Bogdan-Ioan Popa, David Schurig, and David R. Smith, John Pendry, Phys. Rev. E, 74, 036621 (2006)
    [23] Baile Zhang, Hongsheng Chen, Bae-Ian Wu, Yu Luo, Lixin Ran, and Jin Au Kong, Phys. Rev. B, 76, 121101 (2007)
    [24] Ying Huang, Yijun Feng, Tian Jiang, Opt. Express ,Vol. 15, No. 18 11133 (2007)
    [25] Huanyang Chen, Zixian Liang, Peijun Yao, Xunya Jiang, Hongru Ma, and C. T. Chan, Phys. Rev. B. 76, 241104 (2007)
    [26] Ulf Leonhardt and Tomáš Tyc, Science, Vol. 323 110 (2009)
    [27] Shuang Zhang, Dentcho A. Genov, Cheng Sun, and Xiang Zhang, Phys. Rev. Lett. 100, 123002 (2008)
    [28] Steven A Cummer1 and David Schurig, New J. Phys. 9, 45 (2007)
    [29] Liang-Wu Cai and José Sánchez-Dehesa, New J. Phys. 9, 450 (2007)
    [30] Alexander V. Kildishev and Vladimir M. Shalaev, Opt. Letters, Vol. 33, No. 1, 43 (2008)
    [31] Jason Valentine, Jensen Li, Thomas Zentgraf, Guy Bartal and Xiang Zhang, Nature Materials, Vol. 8, 568 (2009)
    [32] Tolga Ergin, Nicolas Stenger, Patrice Brenner, John B. Pendry, Martin Wegener, Science 328, 337 (2010)
    [33] Kosmas L. Tsakmakidis, Allan D. Boardman and Ortwin Hess, Nature, Vol. 450, 397 (2007)
    [34] X. P. Zhao,W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, Appl. Phys. Lett., 95, 071111 (2009)
    [35] Dentcho A. Genov, Shuang Zhang and Xiang Zhang, Nature Phys., Vol.5 287 (2009)
    [36] Qiang Cheng, Tie Jun Cuim, Wei Xiang Jiang, and Ben Geng Cai, New J. of Phys., 12, 063006 (2010)
    [37] Evgenii E. Narimanov, and Alexander V. Kildishev, Appl. Phys. Lett., 95, 041106 (2009)
    [38] Hongsheng Chen, Lixin Ran, Jiangtao Huangfu, Tomasz M. Grzegorczyk and Jin Au Kong, J. Appl. Phys., 100, 024915 (2006)
    [39] E. U. Condon, Rev. Mod. Phys. Vol. 9, 432 (1937)
    [40] Pi-Gang Luan, Phys. Rev. E 80, 046601 (2009)
    [41] L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd, P. 272
    [42] M. Wegener, and Nikolay I. Zheludev, J. of Opt. A: Pure Appl. Opt., 11, 070201 (2009)
    [43] H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)
    [44] E. M. Lifshitz, Soviet Phys. Vol. 2, No. 1, 73 (1956)
    [45] E. Dzyaloshinskii, E. M. Lifshitz and L. P. Pitaevskii, Soviet Phys. Uspekhi, 73, 381 (1961)
    [46] E.M. Lifshitz and L.P. Pitaevskii, Course of Theoretical Physics Vol. 9: Statistic Physic Part 2, 3rd, P.319
    [47] Dennis M. Sullivan, IEEE Trans. Antenna and Propag., Vol. 40, No. 10, (1992)
    [48] Veysel Demir, Atef Elsherbeni and Ercument Arvas,
    [49] T. Driscoll, Hyun-Tak Kim, Byung-Gyu Chae, Bong-Jun Kim, Yong-Wook Lee, N. Marie Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, Science, 325, 1518 (2009)
    [50] F. S. S. Rosa, D. A. R. Dalvit, and P. W. Milonni, Phys. Rev. A. 78, 032117 (2008)
    [51] I. V. Lindell, A. H. Sihvola, S. A. Tretyakov and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, P.2-3
    [52] V. K. Varadan, V. V. Varadan, and A. Lakhtakia, J. of Wave-Material Interaction, Vol. 3, No. 3, 267-272, (1998)
    [53] N. Engheta, and P. Pelet, Optics Letters, Vol. 14, No. 11, 593-595, (1989)
    [54] S. A. Tretyakov, Microwave and Optical Technology Letters, Vol. 6, No. 2, 112-115, (1993)
    [55] R. Ruppin, Phys. Lett. A, 299, 309 (2002)
    [56] A. D. Boardman, K. Marinov, Phys. Rev. B 73, 165110 (2006)
    [57] P.M.T. Ikonen,S.A. Tretyakov, IEEE Trans. Microw. Theory Tech. 55, 92 (2007)
    [58] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773–4776 (1996)
    [59] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Tran. on Microwave Theory and Tech., Vol. 47, No. 11, (1999)
    [60] H. B. G. Casimir, and D. Polder, Phys. Rev., 73, 360, (1948)
    [61] Allen Taflove, and Susan C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd, Chap. 9
    [62] Alexander P. McCauley, Alejandro W. Rodfriguez, John. D. Joannopoulos, and Steven G. Johnson. Arxiv:0906.5170v2
    [63] Yun Lai, Jack Ng, HuanYang Chen, DeZhuan Han, JunJun Xiao, Zhao-Qing Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 253902 (2009)

    QR CODE
    :::