| 研究生: |
黎進明 Tan-Minh Le |
|---|---|
| 論文名稱: |
利用3D列印機列印人造單一節理之力學內寬及水力內寬 Mechanical Aperture and Hydraulic Aperture of Synthetic Single Joint Printed by 3D Printer |
| 指導教授: |
董家鈞
Jia-Jyun Dong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 力學內寬 、水力內寬 、JRC 、匹配關節 、不匹配關節 、3D列印 |
| 外文關鍵詞: | Mechanical aperture, hydraulic aperture, JRC, matched joint, mismatched joint, 3D Printer |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
因為節理經常充當岩體的弱面以及流體路徑,節理岩體的水力-力學特性的描述是岩石力學中的一項艱鉅任務。其中,節理粗糙度對於裂隙的水力傳導係數以及力學行為有直接的影響,它們之間複雜的相互作用自Barton提出岩體節裡面粗糙度(JRC)以來,在過去的四十年間不斷的被研究。本研究期望藉由3D列印技術創造出可量化的單一節裡面,並使用高圍壓孔隙率-滲透率量測系統 (YOKO 2) ,觀察擁有不同輪廓,但有相同JRC的節理面是否能夠有相同的水力-力學特性。試體首先由AutoCAD製作可定量的JRC節裡面,並利用3D列印技術以Vero Pure White材料製作試體,最後使用HDI 120 3D雷射掃描儀確認列印出的試體是否能夠符合設計。這種試體製作方式可以消除岩體的天然異質性,獲得能夠純粹的探討裂隙行為的機會。實驗結果表明,隨著有效圍壓的變化,裂隙試體的孔隙率-滲透率變化是能夠被觀察的,並在力學-水力特性的變化有一定程度上的表述。但本研究亦認為,3D列印製作的試體沒有辦法擁有岩石的力學特性,這關乎到了列印方向、列印間隔以及時間等因素。
關鍵字:力學內寬,水力內寬,JRC,匹配關節,不匹配關節,3D列印
Characterizing the hydro-mechanical behavior of jointed rock mass is one of the challenging tasks in rock mechanics because joints frequently act as weak planes and fluid paths of the rock masses. Among others, joint roughness has a direct influence on both hydraulic conductivity of fractures and the mechanical behaviors of rock joints. The interaction between them is a complex process and has been studied in the past four decades since Barton introduced the Joint Roughness Coefficient (JRC). This main research purpose is to test if the hydro-mechanical behaviors are identical for joints with the same JRC. A new methodology for creating a representative replica of single joint with pre-existing roughness of quantifiable morphology is suitable for testing by the YOKO2 system, allowing the characterization at various stresses and confining pressure. The AutoCAD software, three-dimensional (3D) scanning and 3D printer have been used to design and create printed samples in Vero Pure White materials for standard rigid opaque plastics with the same JRC but different geometry. The surface coordinates of the samples taken with HDI 120 3D laser scanners and JRC were calculated to compare the target values and the design values. The mechanical aperture and hydraulic aperture are measured directly via YOKO2 system under different confining stresses. Scanner results showed that the method was capable of generating joint specimens with similar JRC suitable for the research target. This method is shown to create identical morphological geometry many times, allowing us to identify basic behavior by eliminating natural heterogeneity and experiment under various conditions. The experiment results indicate an evident hysteresis in the aperture with varying effective confining pressure. The effective confining pressure changes cause a change in aperture. Although this study method is particularly successful in investigated the hydraulic and mechanical aperture of different profiles with the same JRC. However, this study encountered significant challenge the printed material does not behave in a rock-like manner, further improvements are needed to expand the application of 3D printers in the field of rock mechanics. Here, this study only shows a few influential factors, such as the printing direction and time printing intervals. There are still many influencing and uncertainties factors that have not been adequately studied.
REFERENCES
Abuqubu, J., Al Dwairi, R. A., Hadi, N. A., Merkel, B., Dunger, V., & Laila, H. A. (2016). Geological and Engineering Properties of Granite Rocks from Aqaba Area, South Jordan. Geomaterials, 06(01), 18–27. https://doi.org/10.4236/gm.2016.61002
Bandis, S. C. (1980). Experimental studies of scale effects on shear strength and deformation of rock joints, Ph.D. thesis, Univ. of Leeds, 385 pp.
Bandis, S. C., Lumsden, A. C., & Barton, N. R. (1983). Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences, 20(6), 249-268.
Barton, N. (1973). Review of a new shear-strength criterion for rock joints. Engineering Geology. https://doi.org/10.1016/0013-7952(73)90013-6
Barton, N. (1978). Suggested methods for the quantitative description of discontinuities in rock masses. ISRM, International Journal of Rock Mechanics and Mining Sciences, 15(6), 319-368.
Barton, N. (1982). Shear strength investigation for surface mining. 3rd Int. Conf. Stability in Surface Mining, C.O. Brawner Editor, 171-196. https://doi.org/10.1016/0148-9062(79)91476-1
Barton, N., Bandis, S., & Bakhtar, K. (1985). Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences, 22(3), 121–140. https://doi.org/10.1016/0148-9062(85)93227-9
Barton, N., & Choubey, V. (1977). The shear strength of rock joints in theory and practice. Rock Mechanics Felsmechanik Mécanique Des Roches, 10(1–2), 1–54. https://doi.org/10.1007/BF01261801
Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164. https://doi.org/10.1063/1.1712886
Brown, S. R., & Scholz, C. H. (1985). Broad bandwidth study of the topography of natural rock surfaces. Journal of Geophysical Research, 90(B14). https://doi.org/10.1029/jb090ib14p12575
Davis, J. C. (1986). Statistics and Data Analysis in Geology, Second Ed., Wiley, New York, 646 pp.
Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., & Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1141–1157. https://doi.org/10.1016/j.ijrmms.2010.06.019
Esaki, T., Du, S., Mitani, Y., Ikusada, K., & Jing, L. (1999). Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. International Journal of Rock Mechanics and Mining Sciences, 36(5), 641–650. https://doi.org/10.1016/S0148-9062(99)00044-3
Fereshtenejad, S., & Song, J. J. (2016). Fundamental study on applicability of powder-based 3D printer for physical modeling in rock mechanics. Rock Mechanics and Rock Engineering, 49(6), 2065–2074. https://doi.org/10.1007/s00603-015-0904-x
Gangi, A. F. (1978). Variation of whole and fractured porous rock permeability with confining pressure. International Journal of Rock Mechanics and Mining Sciences, 15(5), 249–257. https://doi.org/10.1016/0148-9062(78)90957-9
Gentier, S., Riss, J., Archambault, G., Flamand, R., & Hopkins, D. (2000). Influence of fracture geometry on shear behavior. International Journal of Rock Mechanics and Mining Sciences, 37(1–2), 161–174. https://doi.org/10.1016/S1365-1609(99)00096-9
Goodman, R. E. (1974). The mechanical properties of joints, paper presented at Third Congress of the International Society for Rock Mechanics, Denver, Colo, 127-140.
Goodman, R. E. (1976). Methods of Geological Engineering in Discontinuous Rocks, West, New York, 472 pp.
Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland. https://doi.org/10.5075/epfl-thesis-2404
Hakami, E. (1995). Aperture distribution of rock fractures. Ph.D. Thesis, Division of Engineering Geology, Royal Institute of Technology, Stockholm.
Huang, S. L., Oelfke, S. M., & Speck, R. C. (1992). Applicability of fractal characterization and modelling to rock joint profiles. International Journal of Rock Mechanics and Mining Sciences, 29(2), 89–98. https://doi.org/10.1016/0148-9062(92)92120-2
Jang, H. S., Kang, S. S., & Jang, B. A. (2014). Determination of Joint Roughness Coefficients Using Roughness Parameters. Rock Mechanics and Rock Engineering, 47(6), 2061–2073. https://doi.org/10.1007/s00603-013-0535-z
Klinkenberg, L. J. (1941). The permeability of porous media to liquids and gases. In Drilling and Production Practice, American Petroleum Institute, 200–213.
Kulatilake, P. H. S. W., Shou, G., Huang, T. H., & Morgan, R. M. (1995). New peak shear strength criteria for anisotropic rock joints. International Journal of Rock Mechanics and Mining Sciences, 32(7), 673–697. https://doi.org/10.1016/0148-9062(95)00022-9
Kulatilake, P. H. S. W., Um, J., & Pan, G. (1998). Requirements for accurate quantification of self-affine roughness using the variogram method. International Journal of Solids and Structures, 35(31–32), 4167–4189. https://doi.org/10.1016/S0020-7683(97)00308-9
Lanaro, F. (2000). A random field model for surface roughness and aperture of rock fractures. International Journal of Rock Mechanics and Mining Sciences, 37(8), 1195–1210. https://doi.org/10.1016/S1365-1609(00)00052-6
Lee, H. S., & Cho, T. F. (2002). Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mechanics and Rock Engineering, 35(4), 299–318. https://doi.org/10.1007/s00603-002-0028-y
Maerz, N. H., & Franklin, J. A. (1990): Roughness scale effect and fractal dimension. In:Proc., Int. Workshop on Scale Effects in Rock Masses, Loen, 121–125.
Makurat, A., Barton, N., Rad, N. S., & Bandis, S. (1990): Joint conductivity variation due to normal and shear deformation. Proc., Int. Symp. on Rock Joints. Loen, Norway, 535–540.
Martin, W. E., & Bridgmon, K. D. (2012). Quantitative and statistical research methods From hypothesis to results. Journal of Chemical Information and Modeling, 1–498. https://doi.org/10.1017/CBO9781107415324.004
Myers, N. O. (1962). Characterization of surface roughness. Wear, 5(3), 182–189. https://doi.org/10.1016/0043-1648(62)90002-9
Olsson, R., & Barton, N. (2001). An improved model for hydromechanical coupling during shearing of rock joints. International Journal of Rock Mechanics and Mining Sciences, 38(3), 317–329. https://doi.org/10.1016/S1365-1609(00)00079-4
Papaliangas, T. T., Lumsden, A. C., & Hencher, S. R. (1996). Prediction of in situ shear strength of rock joints. In Prediction and performance in rock mechanics and rock engineering , 143-149.
Park, J. W., & Song, J. J. (2013). Numerical method for the determination of contact areas of a rock joint under normal and shear loads. International Journal of Rock Mechanics and Mining Sciences, 58, 8–22. https://doi.org/10.1016/j.ijrmms.2012.10.001
Raju, T. N. (2005). William Sealy Gosset and William A. Silverman: two “students” of science. Pediatrics, 116(3), 732-735. https://doi.org/10.1542/peds.2005-1134
Renshaw, C. E. (1995). On the relationship between mechanical and hydraulic apertures in rough‐walled fractures. Journal of Geophysical Research: Solid Earth, 100(B12), 24629-24636. https://doi.org/10.1029/95jb02159
Scheidegger, A. E. (1958). The physics of flow through porous media. Soil Science, 86(6), 355 pp.
Singh, K. K., Singh, D. N., & Ranjith, P. G. (2015). Laboratory Simulation of Flow through Single Fractured Granite. Rock Mechanics and Rock Engineering, 48(3), 987–1000. https://doi.org/10.1007/s00603-014-0630-9
Son, B. K., Lee, Y. K., & Lee, C. I. (2004). Elasto-plastic simulation of a direct shear test on rough rock joints. International Journal of Rock Mechanics and Mining Sciences, 41(SUPPL. 1). https://doi.org/10.1016/j.ijrmms.2004.03.066
Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. International Journal of Rock Mechanics and Mining Sciences, 46(2), 229–238. https://doi.org/10.1016/j.ijrmms.2008.03.004
Tatone, B. S. A., & Grasselli, G. (2010). A new 2D discontinuity roughness parameter and its correlation with JRC. International Journal of Rock Mechanics and Mining Sciences, 47(8), 1391–1400. https://doi.org/10.1016/j.ijrmms.2010.06.006
Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics. New York: John Wiley & Sons.
Tse, R., & Cruden, D. M. (1979). Estimating joint roughness coefficients. International Journal of Rock Mechanics and Mining Sciences, 16(5), 303–307. https://doi.org/10.1016/0148-9062(79)90241-9
Witherspoon, P. A., Wang, J. S. Y., Iwai, K., & Gale, J. E. (1980). Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resources Research, 16(6), 1016–1024. https://doi.org/10.1029/WR016i006p01016
Yeo, I. W., De Freitas, M. H., & Zimmerman, R. W. (1998). Effect of shear displacement on the aperture and permeability of a rock fracture. International Journal of Rock Mechanics and Mining Sciences, 35(8), 1051–1070. https://doi.org/10.1016/S0148-9062(98)00165-X
Yu, X., & Vayssade, B. (1991). Joint profiles and their roughness parameters. International Journal of Rock Mechanics and Mining Sciences And, 28(4), 333–336. https://doi.org/10.1016/0148-9062(91)90598-G
Zhang, G., Karakus, M., Tang, H., Ge, Y., & Zhang, L. (2014). A new method estimating the 2D Joint Roughness Coefficient for discontinuity surfaces in rock masses. International Journal of Rock Mechanics and Mining Sciences, 72, 191–198. https://doi.org/10.1016/j.ijrmms.2014.09.009