跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖文佑
Wen-Yu Liao
論文名稱: 低放射性廢棄物盛裝容器混凝土品質檢測之研究
指導教授: 黃偉慶
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 198
中文關鍵詞: 氯離子擴散使用年限電阻率鋼纖維分佈
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究延續先前研究團隊所進行的氯離子長期浸泡試驗及ASTM C1556試驗,進行低放射性廢棄物盛裝容器混凝土服務年限的推估。長期浸泡試驗已針對試體氯離子濃度剖面蒐集6年數據,發現盛裝容器混凝土擴散係數下降趨勢已極緩,顯示盛裝容器混凝土因所使用的水膠比甚低,而可能已接近水化終止時間,致使其氯離子擴散係數趨於穩定,如採用ACI研發的Life-365程式進行混凝土服務年限的推估,可能因程式所預測25年水化終止其過長而低估氯離子入侵濃度,進而使混凝土服務年限的預估結果過於樂觀不保守,固修正氯離子擴散係數的計算方法並重新推估服務年限,發現水化提前終止混凝土仍能提供足夠的服務年限;而ASTM C1556試驗蒐集了2年數據,因此仍要持續蒐集數據才能更精準得推估其服務年限。
    為了加速混凝土水化速度,減少早期受損的機會及提升混凝土品質,於本研究使用不同養護溫度60℃(1、2、4天)及80℃(3天、4天、3天+200℃烘箱12小時),觀察其提升混凝土耐久性及提高品質之效果。透過進行抗壓強度試驗、孔隙率試驗、孔隙結構分佈、乾縮試驗與電阻率試驗,發現以80℃養護3天的成效最佳。所使用最終處置盛裝容器之混凝土配比,因為在配比中加入鋼纖維增強混凝土之抗拉能力,因此對混凝土中鋼纖維分佈以3種剖面方式進行檢定,結果分佈差異性皆不顯著,表示盛裝容器混凝土內的鋼纖維為均勻分佈。
    為了快速檢測盛裝容器之混凝土品質進行混凝土電阻率的檢測,發現電阻率與孔隙率、抗壓強度、擴散係數有顯著的關係,顯示以電阻率檢測結果來評估混凝土之品質具有可行性。


    The barriers of facilities which dispose wastes with low radioactivity are mainly composed of concrete. But unlike the normal purpose of concrete, the barrier concrete is expected to be used for more than several hundred years.This study measures long-period experimental data to get better estimated results based on previous studies by using mixes HIC-C and HIC-M, and mixes C and M. Mixes HIC-C and HIC-M were prepared and revised from AASHTO T260 test method in 2010. So far, the experiments have been ongoing and data collected for six years. On the other hand, in 2014, mixes C and M were made according to ASTM C1556 test method. Finally, the study will make comparisons of long-period immersion method and ASTM method based on experimental procedures and test results.
    Based on above data and results, this study expects to seek for new methods to extend and increase concrete's durability. In this study, under different curing conditions at high temperatures of 60℃ (1、2、4 days) and 80℃ (3 days、4 days、3 days + 200℃ oven-dry 12 hours), to observe whether the concrete quality and durability will be improved. There are some tests used for this study to evaluate the effects of maintenance methods and maintenance period, including compressive strength test, porosity test, pore size distribution and resistivity test. Fibre distribution characteristics were evaluated to investigate their effect on the quality. For this purpose, an image processing technique developed in this study was employed.
    From the test results, the aging concrete will get higher hydration degree, and caused the chloride ions hard to penetrate into concrete body. Therefore, under the effectiveness of chloride ions penetrations, ASTM C1556 test method is recommended for concrete service life calcuations.

    摘要 i Abstract iii 目錄 vii 圖目錄 xi 表目錄 xix 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 研究內容 2 第二章 文獻回顧 5 2.1 低放射性廢棄物 5 2.1.1何謂放射性廢棄物 5 2.1.2 低放射性廢棄物最終處置場案例 6 2.2 氯離子入侵模式 12 2.2.1 離子擴散機制 12 2.2.2 氯離子擴散係數 13 2.2.3 表面氯離子Cs 15 2.2.4 時間因子m 16 2.2.5 鋼筋混凝土保護層 16 2.3 程式Life-365簡介 18 2.3.1 發展背景 18 2.3.2 參數設定 19 2.4 服務年限推估模式 22 2.4.1去除第一層數據 22 2.4.2 擴散係數推估方式 23 2.4.3 時間因子推估方式 25 2.4.4 表面氯離子推估方式 26 2.5 計算程序與Life-365驗證 27 2.6 高溫養護之影響 28 2.7 影響電阻率因素 31 2.8 鋼纖維分佈均勻性 33 2.9 乾縮試驗 37 第三章 實驗材料與規劃 39 3.1 實驗材料 39 3.2 實驗設備 43 3.3 實驗內容及方法 46 3.3.1 實驗流程 46 3.3.2 實驗變數 49 3.3.3 實驗方法 51 第四章 氯離子入侵實驗結果與分析 59 4.1 長期浸泡試驗與ASTM相關規範 59 4.2 氯離子入侵混凝土濃度量測及分析(長期浸泡) 61 4.2.1配比HIC-C與配比HIC-M之濃度剖面 62 4.2.2視擴散係數Dapp與表面氯離子濃度CS 63 4.2.3時間因子m值計算(長期浸泡) 66 4.2.4視擴散係數轉換成瞬時擴散係數之推估(長期浸泡) 70 4.2.5表面氯離子濃度CS推估(長期浸泡) 72 4.3 ASTM C1556氯離子入侵混凝土濃度量測及分析 74 4.3.1 ASTM配比C與配比M之氯離子濃度剖面 74 4.3.2瞬時擴散係數D與表面氯離子濃度CS 75 4.3.3 ASTM C1556時間因子m值計算 77 4.3.4 ASTM C1556瞬時擴散係數之推估方法 79 4.3.5長時間浸泡(AASHTO T259)與ASTM試驗結果比較 81 4.4 服務年限推估 84 4.4.1 混凝土澆置完成短時間即受氯離子入侵 86 4.4.2處置場封閉後受氯離子入侵之使用年限推估 88 4.4.3 容器混凝土氯離子擴散係數演化時間 90 第五章 高溫養護之成效分析 95 5.1 抗壓強度試驗 95 5.2 孔隙率試驗 98 5.3 孔隙分布與孔隙結構分析 101 5.4 乾縮試驗 109 5.5 電阻試驗 111 5.6 鋼纖維分佈均勻性分析 119 5.7 混凝土熱養護ASTM C1556試驗 126 5.8 電阻率與其他試驗結果相關性分析 135 第六章 結論與建議 141 6.1 結論 141 6.2 建議 143 參考文獻 145 附錄 A 149 附錄B 157 附錄C 161 附錄D 165

    行政院原子能委員會:http://www.aec.gov.tw/。
    台灣電力公司:http://www.taipower.com.tw/。
    行政院公共工程委員會施工鋼要規範:http://pcces.pcc.gov.tw。
    王茂齡,輸送現象,高立圖書有限公司,台北(1987)。
    行政院原子能委員會,低放射性廢棄物(低階核廢料)最終處置的安全管理(2014)。
    卓世偉,「加速氯離子移動試驗探討氯離子於水泥基複合材料中之傳輸行為」,博士論文,國立臺灣海洋大學材料工程研究所,基隆 (2002)。
    黃然,「不同養護條件下添加飛灰或爐灰對水泥質材料性質影響之研究」,博士論文,國立台灣海洋大學,基隆(2005)。
    李金輝,「黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究」,碩士論文,國立台灣科技大學,台北(2006)。
    王心荻,「試體參數對混凝土電阻值影響之研究」,碩士論文,國立台灣海洋大學,基隆(2009)。
    羅欣蕙,「低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,桃園(2011)。
    陳昱安,「低放處置場工程障壁受氯離子侵蝕服務年限預估研究」,碩士論文,國立中央大學土木工程研究所,桃園(2012)。
    牟妍樺,「低放處置場混凝土工程障壁受氯離子侵襲之服務年限信賴度研究」,碩士論文,國立中央大學土木工程研究所,桃園(2013)。
    莊美玲,「活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估」,博士論文,國立中央大學土木工程研究所,桃園(2014)。
    彭琦茵,「障壁混凝土受氯離子入侵剖面及使用年限推估之方法比較」,碩士論文,國立中央大學土木工程研究所,桃園(2015)。
    陳品臻,「低放處置場混凝土障壁受氯離子入侵之使用年限推估」,碩士論文,國立中央大學土木工程研究所,桃園(2015)。
    吳桂卿,「不同養護溫度條件對提升障壁混凝土品質之成效」,碩士論文,國立中央大學土木工程研究所,桃園(2016)。
    AASHTO T259-02 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.
    AASHTO T260-97 Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.
    Ann, K.Y., Ahn, J. H., and Ryou, J. S. (2009), “The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures.” Construction and Building Materials, Vol. 23, pp. 239- 245.
    ASTM C1556-11 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion.
    ASTM C1152-12 Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete1.
    ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
    Chalee, W., Jaturapitakkul, C. and Chindaprasirt, P. (2009), “Predicting the chloride penetration of fly ash concrete in seawater.” Marine Structures, Vol. 22, No.1, pp. 341-353.
    Cheyrezy, M., Maret, V., Frouin, L.(1995), “Microstructural analysis of RPC (Reactive Powder Concrete).” Cement and Concrete Research, Vol. 25, No.7, pp. 1491-1500.
    DataFit (URL):http://www.curvefitting.com/.
    Gettu, R.(2005), “Study of the distribution :and orientation of fibers in SFRC specimens ”, Materials and Structures, Vol. 38, pp. 31-37.
    Gleize, P.J.P. (2003),“Microstructural investigation of a silica fume–cement–lime mortar.” Cement and Concrete Composites, Vol. 25, No. 2, pp. 171-175.
    Gowers, K.R. and Millard, S. G.(1999),” Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique.” ACI Materials Journal, No. 96-M66.
    Hanson, J.(1963), Optimum steam curing procedure in precasting plants, ACI J Proc, Vol. 60, pp. 75-100.
    Kang, S.T., Lee, B.Y., Kim, J.K., Kim, Y.Y.(2011), “The effect of fibre distribution characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete.” Construction and Building Materials, pp. 2450-2457.
    Klieger, P.(1958), “Effect of Mixing and Curing Temperature on Concrete Strength.” ACI Journal, Proceedings Vol.54, No.12, pp. 1063-1081.
    Lee, N. P. and Chisholm, D. H. (2005), Reactive Powder Concrete., Building Research Levy, Australia.
    Life-365 (URL):http://www.life-365.org/.
    “Life_-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides” (2013).
    Mangat, P.S., and Molloy, B.T. (1994), “Prediction of long term chloride concentration in concrete.” Material and structures, Vol. 27, pp. 338-346.
    Mehta, P. K. (1986), Concrete Structure Properties and Materials., Prentice Hall, Inc., Englewood Cliffs, New Jersey, U.S.A..
    Morris, W., Moreno, E.I. and SagiiCs, A.A.(1996), “Practical evaluation of resistivity of concrete in test cylinders using a wenner array probe.” Cement and Concrete Research, Vol. 26, No. 12, pp. 1779-1787,
    Nokken, M., Boddy, A., Hooton, R.D. and Thomas, M.D.A. (2006), “Time dependent diffusion in concrete−three laboratory studies.” Cement and Concrete Research, Vol. 36, No. 1, pp. 200-207.
    Papadakis, V.G. (2000), “Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress.” Cement and concrete research, Vol. 30, No. 2, pp. 291-299.
    Polder, R.B. (2001), “Test methods for on site measurement of resistivity of concrete a RILEM TC-154 technical recommendation.” Construction and Building Materials, pp. 125-131.
    Sellevold, E.J. (1974), “Mercury porosimetry of hardened cement paste cured or stored at 97°C”, Construction and Building Materials, Vol. 4, pp.399-404.
    Sherman, R.M., David, M.B. and Pfeifer, D.W. (1996), “Durability aspects of precast prestressed Concrete-Part 1 and 2.” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
    Shideler, J., Chamberlin, W.H.(1942), Early strength of concrete as affected by steam curing temperatures, ACI J Proc Vol. 46, pp. 273-283.
    Song, H.W., Lee, C.H. and Ann, K.Y. (2008), “Factors influencing chloride transport in concrete structures exposed to marine environments,” Cement and Concrete Composites, Vol. 30, pp. 113-121.
    Stanish, K. and Thomas, M. (2003), “The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients.” Cement and Concrete Research, Vol. 33, pp. 55-62.
    Young, J.F., Mindess, S. and Darwin, D. (2002), Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
    Zanni, H., Cheyrezy, M., Maret, V., Philippot, S. and Nieto, P. (1996), “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using “Si NMR”.” Cement and Concrete Research , Vol. 26, pp. 93-100.
    Zibara, H.R., Pérezfki, B., Hooton, D.M. and Thomas, D.A. (2000), “A study of the effect of chloride binding on service life predictions.” Cement and Concrete Research, Vol. 30, pp. 1215-1223.

    QR CODE
    :::