跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卿家豪
Jia-Hau Ching
論文名稱: Hele-Shaw cell中的密度差對流現象
Density-driven convection in Hele-Shaw cell
指導教授: 陳培亮
Peilong Chen
Peichun Amy Tsai
Peichun Amy Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 53
中文關鍵詞: 密度差對流雷利數
外文關鍵詞: Density-driven convection, Rayleigh number, Nusselt number
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由碳封存技術的啟發,本實驗為一組Hele-Shaw cell裝置類比二氧化碳在地下水層的對流現象。簡述孔隙介質流與類二維流體之間的關係及前人文獻的結果後,依此架設裝置及流體系統。在過錳酸鉀(KMnO4)粒子與水的交互作用下,清楚觀測到指頭狀對流的動態過程,並加以定性上的描述。我們分析指狀流在控制滲透率下的行為,此包括粗粒化過程、對流起始時間、指狀流平均距離,及溶解速率,此參數範圍相當於模擬雷利數(Ra) 2×〖10〗^4 ~ 8.26×〖10〗^6下的流體行為。透過計算努塞爾特數(Nu)得出,在此Ra區間,溶質的溶解速率不因Ra的改變有顯著的變化。


    Inspired by the flow process of carbon capture and storage(CCS) technology in saline structure, we set up an analogy fluid system in homogeneous porous media to mimic the supercritical \ce{CO2} mixing dynamics with brine. Before getting into the details of the experiment, the theoretical background and previous works are presented first, and then the experimental setup of Hele-Shaw cell is shown. By observing the convective flow due to dissolution, the description of mixing dynamics is given. We also examine the coarsening process, onset time of convection, wavelength of fingers, and the rate of dissolution with Ra the Rayleigh number which is in the range of $2 \times 10^{4} \leq Ra \leq 8.26 \times 10^{6}$. Through calculating Nusselt number, $Nu$, the dimensionless convective flux, which is expected to predict the dissolution process, we find that the dissolution flux is not influenced significantly in this range of $Ra$ number. The result implies the geometrical structure plays a minor role in high $Ra$ for convective dissolution.

    Contents Abstract i Acknowledgements ii List of Figures iv 1 Introduction 1 2 Background knowledge and previous works 3 2.1 Porous media flow . . . . . . . . . . . . . . . 3 2.1.1 Porosity . . . . . . . . . . . . . . . . . . . 4 2.1.2 Darcy's law and permeability . . . . . . . . . 5 2.1.3 Hele-Shaw flow . . . . . . . . . . . . . . . . 6 2.2 Rayleigh-Taylor instability .. . . . . . . . . . 8 2.2.1 Dimensionless number . . . . . . . . . . . . . 9 2.3 Previous work about convection .. . . . . . . . 10 3 Experimental setup 12 3.1 Hele-Shaw cell and fluid systems .. . . . . . . 12 3.2 Calibration of concentration . . . . . . . . . 13 4 Results and Discussion 23 4.1 Qualitative description of convective dynamics. . 23 4.2 Coarsening process . . . . . . . . . . . . 24 4.2.1 Wavelength evolution . . . . . . . . . . 27 4.3 Dissolved KMnO4 mass flux. . . . . . . . . 28 4.4 Convective dimensionless flux in Ra . . . 29 5 Conclusion 41 Appendix 42 Bibliography 43

    [1] O. Sohnel and P. Novotny. Densities of aqueous solutions of inorganic sub-
    stances, volume 22. Elsevier Publishing Company, 1985.
    [2] Guenter Ahlers, Siegfried Grossmann, and Detlef Lohse. Heat transfer and
    large scale dynamics in turbulent rayleigh-benard convection. Rev. Mod.
    Phys., 81(2):503, 2009.
    [3] Susan Solomon, Gian-Kasper Plattner, Reto Knutti, and Pierre Friedlingstein.
    Irreversible climate change due to carbon dioxide emissions. Proceedings
    of the national academy of sciences, pages pnas{0812721106, 2009.
    [4] B. Metz, O. Davidson, H. De Coninck, M. Loos, L. Meyer, et al. IPCC Special
    Report On Carbon Dioxide Capture and Storage. Cambridge university press,
    2005.
    [5] A. Rucci, D. W. Vasco, and F. Novali. Monitoring the geologic storage of
    carbon dioxide using multicomponent sar interferometry. Geophys. J. Int.,
    193(1):197{208, 2013.
    [6] R. Korbl and A. Kaddour. Sleipner vest CO2 disposal-injection of removed
    CO2 into the utsira formation. Energy Convers. Manage., 36(6):509{512,
    1995.
    [7] FC Boait, NJ White, MJ Bickle, RA Chadwick, JA Neufeld, and HE Huppert.
    Spatial and temporal evolution of injected co2 at the sleipner eld, north sea.
    Journal of Geophysical Research: Solid Earth, 117(B3), 2012.
    [8] A. Riaz, M. Hesse, H. A. Tchelepi, and F. M. Orr. Onset of convection in a
    gravitationally unstable di usive boundary layer in porous media. J. Fluid
    Mech., 548:87{111, 2006.
    [9] J. Bear. Dynamics of Fluids in Porous Media. 1972.
    [10] T. E. Faber. Fluid Dynamics for Physicists. Cambridge University Press,
    1995. doi: 10.1017/CBO9780511806735.
    [11] Hamid Emami Meybodi and Hassan Hassanzadeh. Stability analysis of twophase
    buoyancy-driven
    ow in the presence of a capillary transition zone.
    Physical Review E, 87(3):033009, 2013.
    [12] A. C. Slim and T. S. Ramakrishnan. Onset and cessation of time-dependent,
    dissolution-driven convection in porous media. Phys. Fluids, 22(12):124103,
    2010.
    [13] J. J. Hidalgo, J. Fe, L. Cueto-Felgueroso, and R. Juanes. Scaling of convective
    mixing in porous media. Phys. Rev. Lett., 109(26):264503, 2012.
    [14] A. C. Slim. Solutal-convection regimes in a two-dimensional porous medium.
    J. Fluid Mech., 741:461{491, 2014.
    [15] G. S.H. Pau, J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski, and
    K. Zhang. High-resolution simulation and characterization of density-driven

    ow in CO2 storage in saline aquifers. Adv. Water Resour., 33(4):443{455,
    2010.
    [16] J. A. Neufeld, M. A. Hesse, A. Riaz, M. A. Hallworth, H. A. Tchelepi, and
    H. E. Huppert. Convective dissolution of carbon dioxide in saline aquifers.
    Geophys. Res. Lett., 37(22), 2010.
    [17] H. E. Huppert and J. A. Neufeld. The
    uid mechanics of carbon dioxide
    sequestration. Annu. Rev. Fluid Mech., 46:255{272, 2014.
    [18] M. L. Szulczewski, M. A. Hesse, and R. Juanes. Carbon dioxide dissolution
    in structural and stratigraphic traps. J. Fluid Mech., 736:287{315, 2013.
    [19] S. Backhaus, K. Turitsyn, and R. E. Ecke. Convective instability and mass
    transport of di usion layers in a hele-shaw geometry. Phys. Rev. Lett., 106
    (10):104501, 2011.
    [20] P. A. Tsai, K. Riesing, and H. A. Stone. Density-driven convection enhanced
    by an inclined boundary: Implications for geological CO2 storage. Phys Rev
    E Rapid, 87(1):011003(R), 2013.
    [21] A. C. Slim, M. M. Bandi, J. C. Miller, and L. Mahadevan. Dissolution-driven
    convection in a hele-shaw cell. Phys. Fluids, 25(2):024101, 2013.
    [22] J. Garcia. Fluid dynamics of carbon dioxide disposal into saline aquifers,
    2003.
    [23] A. Riaz and Y. Cinar. Carbon dioxide sequestration in saline formations:
    Part i|review of the modeling of solubility trapping. J. Pet. Sci. Technol.,
    124:367{380, 2014.
    [24] R. E. Ecke and S. Backhaus. Plume dynamics in hele-shaw porous media
    convection. Phil. Trans. R. Soc. A, 374(2078):20150420, 2016.

    QR CODE
    :::