| 研究生: |
黃羽屏 Yu-Ping, Huang |
|---|---|
| 論文名稱: |
利用掃描式電子穿隧顯微鏡研究 苯二酚與氰化物對苯胺分子在金(111)電極上吸附結構以及聚合之影響 |
| 指導教授: |
姚學麟
Shueh-Lin, Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 掃描式電子穿隧顯微鏡 、苯胺 、苯二酚 、氰化物 |
| 外文關鍵詞: | STM, Aniline, Benzenediol, Cyanide |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分成三部分,第一部分是利用循環伏安儀(cyclic voltammetry,CV)與掃描式電子穿隧顯微鏡(in situ scanning tunneling microscopy,STM)對金(111)單晶電極於含苯二酚與苯胺的硫酸中進行觀察。此部分使用的苯二酚有對苯二酚(hydroquinone,HQ)、間苯二酚(resorcinol,RS)、鄰苯二酚(catechol,CA)。在STM實驗中,加入苯二酚會在電位0.7V觀察到(√19×√21)的吸附結構,且此結構中苯胺是以z型方式沿√3方向排列,誘使此條件下的聚苯胺沿√3方向生長。除此之外,苯二酚的加入會降低聚苯胺於金(111)電極上的生長量,影響排序為RS > HQ > CT,原因可能與苯二酚於硫酸中的溶解度有關。
第二部分藉由修飾聚苯胺膜於金(111)電極表面去偵測苯二酚物種。CV實驗中觀察到三種苯二酚對聚苯胺的影響皆不同,對苯二酚使聚苯胺加速分解,間苯二酚使聚苯胺原先特徵消失,變成氧化比例高的聚苯胺,鄰苯二酚則產生1,2,4-苯三酚吸附於聚苯胺膜上,以上特色不管是在硫酸、過氯酸、鹽酸、硝酸中均可見到。雖然苯二酚會與聚苯胺互相作用,卻不會摻入聚苯胺中,另外在硫酸中修飾聚苯胺膜的金(111)電極對於對/鄰苯二酚的氧化還原電流皆有提升的效果。加入苯二酚後,STM觀察到聚苯胺有特殊網狀結構出現,三種苯二酚(HQ、RS、CA)在硫酸中造成的網狀聚苯胺分別出現在電位0.6V、0.4V、0.6V,其中藉由對/間苯二酚形成的網狀聚苯胺結構為(4×√19)與(√39×√21)。網狀結構出現的原因可能為苯二酚吸附於較稀疏的聚苯胺鏈間使其扭曲形成。
第三部分為氰化物的研究,亞鐵氰化鉀會使聚苯胺加速成長,STM觀測到金(111)電極表面苯胺吸附結構為(2√3×2√3),並且發現其會造成金原子的移動。另外氰化鉀部分,加入電解液後會使金(111)電極表面快速變化,雖然溶液中有苯胺存在,但電位0.7V的結構為氰根離子與金原子組成的結構(2×2),直至較正電位才觀察到苯胺的吸附。
This thesis is divided into three parts. Part I describes results of cyclic voltammetry (CV) and scanning tunneling microscopy (STM) obtained with the adsorption and oxidative polymerization of aniline on Au(111) electrode in sulfuric acid containing three isomers of benzenediol (BOH) – hydroquinone (HQ), resorcinol (RS), catechol (CA). Molecular resolution STM revealed highly ordered aniline adlattices of Au(111) - (√19 × √21) at 0.7 V with all BOHs. Aniline molecules in (√19 × √21) structure were adsorbed in zigzagged chains along the √3 direction of Au(111), which induced polyaniline to grow along the same direction. BOHs slowed down polymerization of aniline on Au(111), and the effect decreased in the order of RS > HQ > CA, due to their solubility in sulfuric acid.
Part II shows in situ STM study of the molecular structures of polyaniline (PAN) supported by Au(111) electrode when BOHs were introduced in supporting electrolyte of sulfuric acid, perchloric acid, hydrochloric acid and nitric acid. HQ would accelerate the decomposition of PAN. RS changed the electrochemical features of PAN, resulting from an increase quinone moieties in PAN molecules. CA produced 1,2,4-benzenetriol in PAN film. Although BOHs all interacted with PAN, they were not incorporated in the PANI films prepared by electrochemical means. PAN films supported by Au(111) resulted in higher currents of HQ and CA than those found with bare Au(111) in sulfuric acid. In situ STM revealed network PAN structures modified by BOHs. The potentials for formation of network structure were at 0.6, 0.4, and 0.6V for HQ, RS, and CA. The network structures identified as(4×√19) and (√39×√21) consisting of regular winding PAN chains and embedded HQ and RS via hydrogen bonds.
Part III focused on cyanide – accelerated polymerization of aniline. Potassium ferrocyanide was found to accelerate the growth of PAN, and induce the movements of gold surface. In situ STM revealed that aniline molecules were adsorbed in Au(111) - (2√3 × 2√3) structure in the presence of Fe(CN)62-, as opposed to in pure sulfuric acid. Au(111) dissolved fast in acidic solution containing CN-. In situ STM showed (2 × 2) structure of cyanide and gold atom at 0.7 V in 0.5 M H2SO4 + 0.1 mM KCN + 30 mM aniline, which transformed to uncharacterized ordered aniline structure at 0.8 V.
1. 王建祺等编著, 电子能谱学 XPS/XAES/UPS 引论; 北京:国防工业出版社, 1992, p 641.
2. Li, Y.; Lu, D.; Wong, C. P., Electrical Conductive Adhesives with Nanotechnologies. 2010, pp 361-424.
3. Voldman, S. H., The State of the Art of Electrostatic Discharge Protection: Physics, Technology, Circuits, Design, Simulation, and Scaling. IEEE J. Solid-State Circuits 1999, 34, pp1272-1282.
4. Makela, T.; Pienimaa, S.; Taka, T.; Jussila, S.; Isotalo, H., Thin polyaniline films in EMI shielding. Synth. Met. 1997, 85, 1335-1336.
5. Letheby, H., XXIX.-On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 1862, 15, 161-163.
6. Cai, W.-B.; Wan, L.-J.; Noda, H.; Hibino, Y.; Ataka, K.; Osawa, M., Orientational Phase Transition in a Pyridine Adlayer on Gold(111) in Aqueous Solution Studied by in Situ Infrared Spectroscopy and Scanning Tunneling Microscopy. Langmuir 1998, 14, 6992-6998.
7. Huang, W.-S.; Humphrey, B. D.; MacDiarmid, A. G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc., Faraday Trans. 1986, 82, 2385-2400.
8. Okamoto, H.; Ando, Y.; Kotaka, T., Impedance analysis of polyaniline prepared on interdigitated array electrode under direct current polarization potential. Synth. Met. 1998, 96, 7-17.
9. Mohilner, D. M.; Adams, R. N.; Argersinger, W. J., Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode. J. Am. Chem. Soc. 1962, 84, 3618-3622.
10. Bacon, J.; Adams, R. N., Anodic oxidations of aromatic amines. III. Substituted anilines in aqueous media. J. Am. Chem. Soc. 1968, 90, 6596-6599.
11. (a) Hofmeister, F., Zur Lehre von der Wirkung der Salze - Zweite Mittheilung. Archiv für Experimentelle Pathologie und Pharmakologie 1888, 24, 247-260; (b) Zhang, Y.; Cremer, P. S., Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 2006, 10, 658-663.
12. 方宣尹. 掃描式電子穿隧顯微鏡對苯胺、己烷基雙硫醇及苯硫酚分子在金電極上的研究. 國立中央大學, 桃園縣, 2004.
13. Vonlanthen, D.; Lazarev, P.; See, K. A.; Wudl, F.; Heeger, A. J., A Stable Polyaniline-Benzoquinone-Hydroquinone Supercapacitor. Adv. Mater. 2014, 26, 5095-5100.
14. Yano, J.; Ogura, K.; Kitani, A.; Sasaki, K., The Kinetic Difference between Hydroqinone and Fe2+ in the Electrochemical Response of a Polyaniline-Film-Coated Electrode. Synth. Met. 1992, 52, 21-31.
15. Hamelin, A., Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J. Electroanal. Chem. 1996, 407, 1-11.
16. Cuesta, A.; Kleinert, M.; Kolb, D. M., The adsorption of sulfate and phosphate on Au(111) and Au(100) electrodes: an in situ STM study. Phys. Chem. Chem. Phys. 2000, 2, 5684-5690.
17. Magnussen, O. M.; Hagebock, J.; Hotlos, J.; Behm, R. J., In situ scanning tunnelling microscopy observations of a disorder-order phase transition in hydrogensulfate adlayers on Au(111). Faraday Discuss. 1992, 94, 329-338.
18. Nishizawa, T.; Nakada, T.; Kinoshita, Y.; Miyashita, S.; Sazaki, G.; Komatsu, H., AFM observation of a sulfate adlayer on Au(111) in sulfuric acid solution. Surf. Sci. 1996, 367, L73-L78.
19. WANG, J.; DAVENPORT, A. J.; ISAACS, H. S.; OCKO, B. M., Surface Charge—Induced Ordering of the Au(111) Surface. Science 1992, 255, 1416-1418.
20. Ye, S.; Ishibashi, C.; Uosaki, K., Anisotropic Dissolution of an Au(111) Electrode in Perchloric Acid Solution Containing Chloride Anion Investigated by in Situ STMThe Important Role of Adsorbed Chloride Anion. Langmuir 1999, 15, 807-812.
21. Choi, S.-J.; Park, S.-M., Electrochemistry of Conductive Polymers. XXVI. Effects of Electrolytes and Growth Methods on Polyaniline Morphology. J. Electrochem. Soc. 2002, 149, E26-E34.
22. 陳思孜. 利用掃描式電子穿隧顯微鏡探討聚苯胺及其衍生物在金(111)電極上之吸附與構型變化. 國立中央大學, 桃園縣, 2014.
23. Duic, L.; Grigic, S., The effect of polyaniline morphology on hydroquinone/quinone redox reaction. Electrochimica Acta 2001, 46, 2795-2803.
24. Kim, Y.-G.; Soriaga, M. P., Electron-Transfer-Induced Molecular Reorientations: The Benzoquinone/Hydroquinone Reaction at Pd(111)-(√3×√3)R30°-I Studied by EC-STM. J. Colloid Interface Sci. 2001, 236, 197-199.
25. (a) Nasr, B.; Abdellatif, G.; Canizares, P.; Saez, C.; Lobato, J.; Rodrigo, M. A., Electrochemical oxidation of hydroquinone, resorcinol, and catechol on boron-doped diamond anodes. Environ. Sci. Technol. 2005, 39, 7234-7239.
26. Philipp, B.; Schink, B., Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobius. J. Bacteriol. 1998, 180, 3644-3649.
27. Yau, S.; Lee, Y.; Chang, C.; Fan, L.; Yang, Y.; Dow, W.-P., Structures of Aniline and Polyaniline Molecules Adsorbed on Au(111) Electrode: as Probed by in Situ STM, ex Situ XPS, and NEXAFS. J. Phys. Chem. C 2009, 113, 13758-13764.
28. Ryan, M. D.; Yueh, A.; Chen, W. Y., The Electrochemical Oxidation of Substituted Catechols. J. Electrochem. Soc. 1980, 127, 1489-1495.
29. Mukherji, S.; Singh, S.; Kapoor, R.; Dass, R., Organic Chemistry, vol. II, 2nd ed.: Organic Chemistry New Age International, 2012.
30. Lee, Y. H.; Chang, C. Z.; Yau, S. L.; Fan, L. J.; Yang, Y. W.; Yang, L. Y. O.; Itaya, K., Conformations of Polyaniline Molecules Adsorbed on Au(111) Probed by in Situ STM and ex Situ XPS and NEXAFS. J. Am. Chem. Soc. 2009, 131, 6468-6474.
31. Buttner, E.; Holze, R., Hydroquinone oxidation electrocatalysis at polyaniline films. J. Electroanal. Chem. 2001, 508, 150-155.
32. Mazeikiene, R.; Malinauskas, A., Doping of polyaniline by some redox active organic anions. Eur. Polym. J. 2000, 36, 1347-1353.
33. 許家豪. 即時電化學掃描式電子穿隧顯微鏡對Au(111),Au(100)和Pt(100)電極反應的研究. 國立中央大學, 桃園縣, 2005.