跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃忠良
chung-liang huang
論文名稱: 高韌性纖維混凝土耦合結構牆之數值模型
指導教授: 洪崇展
chung-chan hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 高韌性纖維混凝土耦合結構牆
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同於傳統混凝土到達拉應力降伏後隨即破壞,高韌性纖維混凝土於拉力作用下具有應變硬化之能力,其最大容許拉應力將近為傳統混凝土的一百倍,於壓力作用時,纖維可以提供類似箍筋之圍束效果,使高韌性纖維混凝土具有比傳統混凝土更為優越之強度與韌性,這些材料行為之優勢,大幅提升了高韌性纖維混凝土結構物之抗剪能力、韌性、損害容忍力、與消能能力。本研究目的在於建立高韌性纖維混凝土之結構尺寸模型,其可用以有效分析大型高韌性纖維混凝土結構物之地震行為。所發展之數值模型採用梁柱元素模擬高韌性纖維混凝土桿件受軸力與彎矩之行為,並結合彈簧模型,描述桿件剪力行為與鋼筋滑移對桿件行為之影響。數值模型之性能使用數種不同結構桿件之實驗結果進行評估,結果證實所發展之模型能有效分析高韌性纖維混凝土重要之非線性行為。
    本文使用所發展之模型建立二十層樓的耦合牆系統,分別建立兩種系統,第一種為傳統鋼筋混凝土耦合牆系統,第二種為高韌性纖維混凝土耦合牆系統,其使用高韌性纖維混凝土於結構牆之塑性鉸區,並對兩種系統分別使用20%、40%以及60%的耦合率,探討不同材料與耦合率對高樓層耦合牆系統的效能影響,其結構行為以非線性側推分析與反覆側推分析進行調查,結果顯示出,高韌性纖維混凝土耦合牆系統在不同耦合率下皆有效提升系統的基底降伏剪力,且在反覆側推分析中,所呈現的遲滯圈也較為飽滿,而系統的地震行為則以兩種不同層級地震作用下進行調查,透過樓層位移、結構牆轉角、連接梁轉角與層間相對變位角等系統行為參數,比較兩種不同材料之耦合牆系統之性能,分析結果指出,高韌性纖維混凝土耦合牆系統能達成性能化設計法的中級與強烈地震的設計目標,且減少結構牆的最大轉角,證實高韌性纖維混凝土的材料優勢確實能提高大型結構物的抗震能力。


    Highly ductile fiber reinforced cement-based composites (HDFRCCs) are distinguished from regular concrete material by their strain hardening behavior accompanied by multiple narrow cracking under tension. It was reported that the maximum tensile strain of HDFRCC can be 2 orders in magnitude larger than that of regular concrete. When HDFRCCs are under compression, the introduced fibers act like stirrups, making HDFRCCs behave like confined concrete with improved strength capacity and ductility. These advantages in material scale transform into the enhanced shear resistance, ductility, damage tolerance, and energy dissipation capacity in structural scale. One objective of this dissertation is to develop a structural scale model for HDFRCCs that can be used to effectively analyze the seismic behavior of large structures made of HDFRCCs. The developed HDFRCC element consists of a beam column element, a rotational spring, and a translational spring. While the axial and flexural behavior of HDFRCC structures are simulated using beam-column elements with fiber sections, the effects of shear response and bond slip on the HDFRCC structures are addressed using spring models. The performance of the HDFRCC element is evaluated using extensive experimental data from tests on several types of HDFRCC structures. It is concluded that the developed numerical model is capable of modeling the general nonlinear behavior of HDFRCC structures under cyclic loading with reasonable accuracy. In addition, the developed material model is employed to compare the seismic performance of traditional RC coupled walls with the counterpart incorporating HDFRCC. The analysis results provide value insights into the advantage of using HDFRCC to replace regular reinforced concrete in the critical regions of coupled walls.

    摘要 ------------------------------------------------------------------------------ I ABSTRACT ------------------------------------------------------------------ III 致謝--------------------------------------------------------------------Ⅳ 目錄 ----------------------------------------------------------------------------- Ⅴ 表目錄 --------------------------------------------------------------------------Ⅷ 圖目錄 -------------------------------------------------------------------------- Ⅹ 第一章 緒論 1 1-1研究動機 1 1-2研究目的 3 第二章 文獻回顧 4 2-1高韌性纖維混凝土 4 2-2高韌性纖維混凝土之應用 9 2-3耦合結構牆系統 12 2-3-1結構牆 13 2-3-2連接梁 14 2-3-3耦合率 15 2-4修正壓力場理論(Modified Compression-Field Thory) 19 2-4-1力平衡方程式 21 2-4-2材料組成率 25 2-4-3諧和方程式 25 第三章 高韌性纖維混凝土材料數值模型 27 3-1剪力行為模型 29 3-1-1高韌性纖維混凝土單軸單向應力應變模型 29 3-1-2單向載重下之剪應力應變關係 32 3-1-3反覆載重下之剪應力應變遲滯圈 39 3-2固定端鋼筋滑移行為模型 41 3-2-1鋼筋滑移行為 41 3-2-2單向載重下之固定端鋼筋滑移模型 43 3-2-3反覆載重下之彎矩與轉角遲滯圈 49 第四章 高韌性纖維混凝土模型驗證 51 4-1結構牆模型驗證 52 4-1-1高韌性纖維結構牆模型驗證 52 4-1-2混凝土結構牆模型驗證 61 4-2連接梁模型驗證 67 4-2-1高韌性纖維混凝土連接梁模型驗證 67 4-2-2混凝土連接梁模型驗證 73 4-3耦合牆系統模型驗證 79 第五章 高樓層耦合牆系統分析 94 5-1高樓層耦合牆系統非線性側推分析 100 5-2高樓層耦合牆系統反覆側推分析 102 5-3耦合牆系統動態歷時分析 104 第六章 結論 113 參考文獻 116

    1. Collins, M. P., Vecchio, F. J., and Mehlhorn, G. “An international competition to predict the response of reinforced concrete panels.” Canadian Journal of Civil Engineering,12(3), 624-644, (1985).
    2. Canbolat, B. A., Parra-Montesinos, G. J., and Wight, J. K., “Experimental study on seismic behavior of high-performance fiber-reinforced cement composite coupling beams.” ACI Structral Journal,102(1), 159-166, (2005).
    3. Chou, S.-H., Naaman, A. E., and Parra-Montesions, G. J., “Bond behavior of strand embedded in fiber reinforced cementitious composites.” PCI Journal, November-December (2006).
    4. El-Tawil, S., M.Kuenzli, C., and Hassan, M., “Pushover of hybrid coupled walls. I:design and modeling.” ASCE, Journal of Structural Engineering, 128(10), 1272-1281, (1999).
    5. Filip, C, Filippou, Angelo D’ambrisi “Nonlinear static and dynamic analysis of reinforced concrete subassemblages” Earthquake Engineering Research Center, University of California, Berkeley, Report No.UCB/EERC-92/08, (1992).
    6. Filippou, F. C., D’Ambrisi, A. “Modeling of cyclic shear behavior in RC member” ASCE, Journal of Structural Engineering, 125(10), 1143-1150, (1999).
    7. Hung, C.-C. and El-Tawil S.“Hybrid rotating / fixed-crack model for high performance fiber-reinforced cementitious composites” ACI Materials Journal/November-December, 107(6), 569-577, (2010).
    8. Hassan, M., and El-Tawil, S., “Inelastic dynamic behavior of hybrid coupled walls.” ASCE, Journal of Structural Engineering , 130(2), 285-296, (2004).
    9. Kwan, A. K. H. and Zhao Z.-Z. “Cyclic behavior of deep reinforced concrete coupling beams” Structure and Building, 152(3), 283-293, (2001).
    10. Krstulovic-Opara, N., Watson,K.A., and LaFave, J. M. ‘‘Effect of increased tensile strength and toughness on reinforcing-bar bond behavior.’’ Cement and Concrete, 16,129-141(1994).
    11. Kim, D.-Y., and Kwak, H.-G, “Cracking behavior of RC shear walls subject to cyclic loadings.” Department of Civil and Environmental Engineering, 1(1), 77-98, (2004).
    12. Kim, D. J., “Strain rate effect on high performance fiber reinforced cementitious composites using slip hardening high strength deformed steel fibers.” University of Michigan, Doctor's Thesis, (2009)
    13. Lowes, L. N, Mitra, N., and Altoontash, A. “A beam-column joint model for simulating the earthquake response of reinforced concrete frames.” Pacific Earthquake Engineering Research Center , University of California, Berkeley, (2003).
    14. Lequesne, R. D, “Behavior and design of high-performance fiber-reinforced concrete coupling beams and coupled-wall systems.” University of Michigan, Doctor's Thesis, (2011).
    15. Mohr, D. S., “Nonlinear analysis and performance based design methods for reinforced concrete coupled shear walls.” University of Washington, Master’s Thesis, (2007).
    16. M.Asce, H. S., and Chowdhury, T., “Hysteretic model for reinforced concrete columns including the effect of shear and axial load failure.” ASCE, Journal of Structural Engineering, 135(2), 139-146, (2009).
    17. Oyen, P. E. “Evaluation of analytical tools for determining the seismic response of reinforced concrete shear walls.” University of Washington, Master’s Thesis, (2006).
    18. Parra-Montesino, G. J. “High-performance fiber reinforced cement composites: an alternative for seismic design of structures.” ACI Structural Journal,102(5),668-675 (2005).
    19. Paulay, T. “Coupling beams of reinforced concrete shear walls.” ASCE, Journal of Structural Engineering, 97(3), 843-862, (1971).
    20. Pinto, A.V., Molina, L., and Tsionis, G., “Cyclic tests on large-scale models of existing bridge piers with rectangular hollow cross-section.” Earthquake Engineering and Structural Dynamics, 32(13), 1995-2012, (2003).
    21. Parra-Montesinos, G. J., Canbolat, B. A., and Jeyaraman, G, R., “Relaxation of confinrment eeinforcement eequirement in structural walls through the use of fiber reinforced cement composites.” 8th National Conference on Earthquake Engineering, San Francisco, CA, Apr. (2006).
    22. Setzler, E. J., and Sezen, H., “Model for the lateral behavior of reinforced concrete columns including shear deformations.” Earthquake Spectra, 24(2), 493–511(2008).
    23. Sezen, H., and Setzler, E. J., “Reinforcement slip in reinforced concrete columns.” ACI Structral Journal, 105(3), (2008).
    24. Vecchio, F. J., and Collins, M. P. ‘‘The modified compression field theory for reinforced concrete elements subjected to shear.’’ ACI Struct. J., 83(2), 219–231, (1986).

    QR CODE
    :::