跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林冠任
Kuan-Jen Lin
論文名稱: 改善區域系集卡爾曼濾波器在颱風同化及預報中的spin-up問題-2008年颱風辛樂克個案研究
Improving the spin-up of the regional EnKF for typhoon assimilation and prediction with the 2008 typhoon Sinlaku
指導教授: 楊舒芝
Shu-Chih Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 100
語文別: 英文
論文頁數: 80
中文關鍵詞: 颱風預報系集卡爾曼濾波器資料同化
外文關鍵詞: typhoon prediction, data assimilation, EnKF
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 系集卡爾曼濾波器(EnKF)的特性是利用系集之間發展的差異來代表與背景場動力相依(flow-dependent)的誤差統計特性,而其優勢的前提為系集對於誤差特性能有一定的代表程度。但在區域EnKF系統中因多半使用冷起始,因而需要數個同化循環後方能得到較可靠的誤差統計特性並有效的利用觀測資訊產生好的分析場。此也造成EnKF在劇烈天氣系統的模擬當中需要一段spin-up的時間來達到其分析同化之應有表現。即便有觀測資料,這2~3天的spin-up時間卻嚴重限制了模式能及早模擬及預測颱風發展的能力
    本研究在WRF模式搭配局地化系集轉換卡爾曼濾波器(LETKF)資料同化系統的架構下使用由Kalnay and Yang(2010)所提出的”Running In Place(RIP)”方法來加速EnKF的spin-up,希望在較早的時間就能正確的預報颱風的路徑。在本研究中是首次針對2008年的颱風辛樂克進行真實個案的模擬。
    實驗結果顯示,在使用RIP方法之後,分析場可以較好的掌握颱風的大小,但颱風的中心定位與強度則無明顯的改善。至於預報方面,颱風的三天預報路徑有顯著的改善,特別是當颱風還處於成長階段的時候。這是因為RIP方法可以更有效的利用觀測資料並且發揮這些有限資料的價值。而在颱風強度的預報方面,RIP方法的調整僅限於使用RIP的第一天。最後,在RIP的使用需注意當EnKF的背景誤差協方差已經可以有效的發揮觀測的效果時,應該停止RIP並回復到標準的資料同化循環以避免對觀測的過度擬合。


    The characteristic of Ensemble Kalman Filter (EnKF) is to use a set of ensemble to represent the flow-dependent dynamical error statistic. However, the prerequisite for optimizing the performance of EnKF is that the ensemble perturbations are representative to the error characteristic. However, for the regional EnKF, the cold starting procedure is normally used to initialize the ensemble members. In these cases, a spin-up period is required to construct a reliable background error covariance. After the spin-up, the observation can be correctly used and provide effective analysis corrections and the regional EnKF can then achieve its asymptotic level of performance. For typhoon assimilation and prediction, such issue of the EnKF’s spin-up becomes a serious concern in Taiwan since this limits our ability to predict the typhoon movement during the early stage of typhoon.
    In this study, the ‘Running In Place (RIP)’ method proposed by Kalnay and Yang (2010) is implemented in the framework of the Local Ensemble Transform Kalman Filter (LETKF) coupled with the Weather Research and Forecasting (WRF) model. The RIP method is used to accelerate the spin-up of EnKF, in order to make reliable typhoon track prediction at earlier time. The work with the 2008 Typhoon Sinlaku is the first real case study using the RIP method.
    Result shows that, the RIP method is beneficial for improving the environmental condition for the typhoon so that the size of the typhoon can be better estimated in the analysis fields. However, less impact on the inner structure of the typhoon and there is no significant improvement for the center position and intensity. For forecast verification, the track prediction has been significantly improved with RIP after 24-hr forecast hours. The improvement is especially significant during the rapid intensifying period of the Typhoon. It is because that with the RIP method, the limited observations can be used more effectively. We suggest that after the background error covariance has been spun-up and can reasonably extract the observation information, RIP method should be turned off and the assimilation should switch back to the standard LETKF cycle to avoid the overfitting.

    摘要 i Abstract: ii Acknowledgement iv Table of Contents v 圖目錄: vi 1.Introduction 1 1.1Study review 1 1.2Motivation 3 2.Typhoon Sinlaku(2008-09-09 ~ 2008-09-21) 5 3.Methodology 7 3.1Weather Research and Forecasting(WRF) model 7 3.2Local Ensemble Transform Kalman Filter (LETKF) 7 3.3Running In Place(RIP) method 9 3.4Observation impact estimation method 11 4.Experimental design 14 4.1Setting for the model and assimilation system 14 4.2Ensemble initialization 16 4.3WRF-LETKF-RIP 16 4.4Experiments 17 5.Experiments results 19 5.1Results of the control experiments (LRn,LRy) 19 5.1.1Background error covariance 20 5.1.2Analysis verification 23 5.1.3Forecast performance 24 5.1.4Observation impact at 0906z 26 5.2Results of different cold-starting time 27 5.2.1Impact of different cold-starting time on the standard LETKF 28 5.2.2Impact of different cold-starting time on the RIP method 29 5.3The threshold for the RIP method 30 6.Discussion and conclusion 32 References: 35 Tables and Figures 37

    高晟傑,2012:利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事
    件 預報之影響。國立中央大學大氣物理研究所碩士論文,70頁。
    連國淵,2009:颱風路徑與結構同化研究-系集卡爾曼濾波器。國立台灣大學大
    氣科學研究所碩士論文,87頁。
    陳新淦,2011:颱風策略性觀測理論之特徵分析與驗證-駛流敏感共軛向量系集
    變換卡爾曼濾波器。國立台灣大學大氣科學研究所博士論文,122頁。
    Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track
    and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 2046–2061.
    Buckingham, C. , T. Marchok, I. Ginis, L. Rothstein and D. Rowe,2010:Short- and Medium-Range
    Prediction of Tropical and Transitioning Cyclone Track within the NCEP Global Ensemble Forecasting System, Wea. Forecasting, 25, 736-75
    Caya C, Sun J, Snyder C. 2005. A comparison between the 4D-VAR and the Ensemble Kalman Filter
    techniques for radar data assimilation. Mon. Weather Rev. 133: 3081–3094.
    Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea.
    Rev., 135, 1828–1845.
    Chou,K.-H.,C.C.Wu et al.,2011:The Impact of Dropwindsonde Observation on Typhoon Track
    Forecasts in DOTSTSR and T-PARC. Mon. Wea. Rev., 139, 1728–1743.
    Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science
    basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209–231.
    Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model usingMonte
    Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162.
    ——, 2003: The ensemble Kalman filter: Theoretical formulationand practical implementation.
    Ocean Dyn., 53, 343–367.
    Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon
    Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662–674.
    Hunt,E.J.Kostelich, and I,Szunyogh,2007:Efficient data ssimilation for spatiotemporal
    chaos:A local ensemble transform Kalman filter. Physica D,230,112-126
    Kalnay E, S.-C. Yang. 2010: Accelerating the spin-up of Ensemble Kalman Filter. Q.J.R.
    Meteorol. Soc. 136: 1644-1651.
    ——, Y. Ota, T. Miyoshi, J. Liu. 2012: A Simpler Formulation of Forecast Sensitivity to Observations:
    Application to Ensemble Kalman Filters. Tellus, in press.
    Kunii, M., T. Miyoshi, and E. Kalnay, 2012: Estimating impact of real observations in regional numerical
    weather prediction using an ensemble Kalman filter. Mon. Wea. Rev., 140, 1975-1987.
    Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by
    vortex specification. Mon. Wea. Rev., 121, 2030–2045.
    ——,——, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system.
    Mon. Wea. Rev., 123, 2791–2801.
    ——, R. E. Tuleya, and M. A. Bender, 1998: The GFDL hurricane prediction system and its
    performance in the 1995 hurricane season. Mon. Wea. Rev., 126, 1306–1322.
    Langland, R. H., and N. Baker, 2004: Estimation of observation impact using the NRL atmospheric
    variational data assimilation adjoint system. Tellus, 56A, 189–201.
    Li, H., J. Liu, and E. Kalnay, 2010: Correction of ‘Estimating observation impact without adjoint model in
    an ensemble Kalman filter.’ Quart. J. Roy. Meteor. Soc., 136, 1652–1654.
    Liu, J., and E. Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble
    Kalman filter. Quart. J. Roy.Meteor. Soc., 134, 1327–1335.
    Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with
    the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519–1535.
    ——, and M. Kunii, 2011: The local ensemble transform Kalman filter with the Weather Research
    and Forecasting model: Experiments with real observations. Pure Appl. Geophys., 169, 321-333.
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005:
    A description of the Advanced Research WRF version 2. NCAR Tech. Note TN-468_STR, 88 pp.
    Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area
    ensemble Kalman filters. Mon. Wea. Rev., 134, 2490–2502.
    ——, and ——, 2009: Ensemble data assimilation applied to RAINEX observations of Hurricane
    Katrina (2005). Mon. Wea. Rev., 137, 2817–2829.
    Park, K., and X. Zou, 2004: Toward developing an objective 4DVAR BDA scheme for hurricane
    initialization based on TPC observed parameters. Mon. Wea. Rev., 132, 2054–2069.
    Pu, Z.-X., and S. A. Braun, 2001: Evaluation of bogus vortex techniques with four-dimensional
    variational data assimilation. Mon. Wea. Rev., 129, 2023–2039.
    Weissmann, M., and Coauthors, 2011: The influence of assimilating dropsonde data on typhoon track
    and midlatitude forecasts. Mon. Wea. Rev., 139, 908–920.
    Wu, C.-C., K.-H. Chou, Y. Wang, and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction
    based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395.
    ——, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure
    based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 3806–3822.
    ——, Yi-Hsuan Huang, Guo-Yuan Lien, 2012: Concentric Eyewall Formation in Typhoon Sinlaku
    (2008). Part I: Assimilation of T-PARC Data Based on the Ensemble Kalman Filter (EnKF).
    Monthly Weather Review 140, 506-527.
    Yang S-C, Corazza M, Carrassi A, Kalnay E, MiyoshiT. 2009. Comparison of ensemble-based
    and variational-based data assimilation schemes in a quasi-geostrophic model. Mon. Wea. Rev. 137: 639–709.
    ——, E. Kalnay and T. Miyoshi, 2012: Accelerating the EnKF Spinup for Typhoon Assimilation and
    Prediction, Wea. Forecasting, 27, 878–897.

    QR CODE
    :::