跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭凱恩
Cai-N Cheng
論文名稱: 不同類型的環境豐富化對改善安非他命誘導行為敏感化之影響
Investigations of different types of environmental enrichment ameliorating amphetamine-induced behavioral sensitization
指導教授: 吳少傑
黃智偉
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 124
中文關鍵詞: 環境豐富化安非他命行為敏感化焦慮行為多巴胺光遺傳學小鼠
外文關鍵詞: environmental enrichment, methamphetamine, behavioral sensitization, anxiety behavior, dopamine, optogenetics, mice
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境豐富化是藥物成癮的重要保護因子之一。本研究之目的是檢驗不同環境豐富化對於安非他安非他命誘導之行為敏感化及焦慮行為的影響。本研究首先確定最佳的環境豐富化條件(研究一),並透過多巴胺促進劑(即apomorphine)及拮抗劑(即haloperidol)檢驗最佳型態環境豐富化,對於安非他命誘導之行為敏感化及焦慮之減緩效果(研究二),最後驗證最佳環境豐富化型態在多巴胺投射路徑之可能(研究三)。本研究將區分四種環境豐富化(如社會環境豐富化、物理性環境豐富化、認知環境豐富化、以及標準環境豐富化),並且收集開放場域作業之行為指標,包含行為敏感化(如總距離、總速度、最大速度)與焦慮行為(如進出中心區的次數、時間、進入中心區的距離以及在中心區的速度);同時,透過組織免疫染色方法(immunofluorescence, IHC)標定c-Fos(代表神經活性)在特定神經細胞核區——這些候選核區包括:cingulated cortex area 1 (Cg1), prelimbic cortex (PrL), infralimbic cortex (IL), basolateral amygdala (BLA), nucleus accumbens (NAc), striatum (e.g., caudate-putamen, CPu), CA1, CA3, dentate gyrus (DG),以及ventral tegmental area (VTA)。並將透過光遺傳學,以AAV5-CaMKII-ChR2-EYFP 病毒檢驗IL投射NAc路徑,來確定參與環境豐富化緩解安非他命之行為敏感化的腦機轉。本研究發現標準環境豐富化的操弄是最佳的環境豐富化模式,可以減少安非他命誘導之行為敏感化,但安非他命在此研究中無法產生焦慮行為。此外,免疫染色的檢測結果發現,CA3, Cg1, DG, PrL, IL, BLA, NAc以及VTA核區得以產生較多的c-Fos表現量,代表這些核區參與安非他命誘導的行為敏感化。而標準環境豐富化操弄,可以使得CPu, Cg1, NAc, BLA, IL, VTA, CA3 及DG,這些核區的c-Fos表現量減少,代表標準環境豐富化操弄可以緩解安非他命誘導的行為敏感化及c-Fos表現量。另一方面,於VTA核區施打多巴胺促進劑及拮抗劑,兩者的控制組相比之下,多巴胺促進劑的施打產生更多活動量,表示多巴胺拮抗劑可能不影響動物的行為敏感化,但無論施打多巴胺促進劑或拮抗劑,標準環境豐富化仍可以減少安非他命誘導的行為敏感化。最後,光遺傳學數據表示,在環境豐富化下不論有無光線刺激,僅能降低動物行為距離,代表光刺激打在依核核區將減少行為敏感化,但是光刺激卻不影響焦慮行為。本研究結果將對於安非他命誘導的行為敏感化以及成癮,在臨床上,將帶來重要的臨床價值。


    Environmental enrichment is an important protective factor for drug addiction. The purpose of this study is to examine the influence of different types of environmental enrichment on amphetamine-induced behavioral sensitization and anxiety behavior. This study first identified the optimal environmental enrichment (Study 1). Second, it investigated the effect of optimal environmental enrichment on amphetamine-induced behavioral sensitization and anxiety behavior using a dopamine agonist (apomorphine) and antagonist (haloperidol) (Study 2). Finally, the possible neural circuits involved in the environmental enrichment-mediated alleviation of amphetamine-induced behavioral sensitization were verified (Study 3). Four types of environmental enrichment (social, physical, cognitive, and standard) were examined, and open-field behavioral indices, including behavioral sensitization (total distance, total speed, and maximum speed) and anxiety behavior (the number, time, and distance of entries into the center area and the speed in the center area), were recorded. Immunofluorescence staining was used to label c-Fos (representing neural activity) in the candidate nuclei in the cingulate cortex area 1 (Cg1), prelimbic cortex (PrL), infralimbic cortex (IL), basolateral amygdala (BLA), nucleus accumbens (NAc), striatum (e.g., caudate-putamen, CPu), CA1, CA3, dentate gyrus (DG), and ventral tegmental area (VTA). In addition, optogenetics with AAV5-CaMKII-ChR2-EYFP virus was used to investigate the IL-NAc pathway to identify the brain circuits involved in the environmental enrichment-mediated alleviation of amphetamine-induced behavioral sensitization. The findings suggest that standard environmental enrichment manipulation is the optimal environmental enrichment model that reduced amphetamine-induced behavioral sensitization; however, amphetamine could not produce anxiety behavior. In addition, immunofluorescence staining revealed that CA3, Cg1, DG, PrL, IL, BLA, NAc, and VTA nuclei exhibited increased c-Fos expression, indicating that these nuclei were involved in amphetamine-induced behavioral sensitization. Standard environmental enrichment manipulation reduced c-Fos expression in the CPu, Cg1, NAc, BLA, IL, VTA, CA3, and DG nuclei, indicating that standard environmental enrichment can alleviate amphetamine-induced behavioral sensitization and c-Fos expression. A dopamine agonist and antagonist were injected into the VTA nucleus. Compared with the control group, the dopamine agonist increased activity, suggesting that the dopamine agonist may not affect the animals' behavioral sensitization; however, standard environmental enrichment was still able to reduce amphetamine-induced behavioral sensitization regardless of the presence of a dopamine agonist or antagonist. Finally, the optogenetic data revealed that only the distance travelled was reduced under environmental enrichment, regardless of whether light stimulation was present or not, indicating that light stimulation on the IL nucleus can reduce behavioral sensitization but has no effect on anxiety behavior. The results of this study provide important clinical value to the knowledge of behavioral sensitization and addiction induced by amphetamine.

    Table of Contents Chinese Abstract i English Abstract iii Acknowledgments vii Table of Contents ix List of figures xi List of tables xv 1. Introduction 1 1.1. Drug addiction 1 1.2. Behavioral sensitization induced by psychostimulants 3 1.3. What is environmental enrichment? 4 1.4. Synaptic changes in environmental enrichment: motor learning and stimulus 6 1.5. Neural plasticity and environmental enrichment 7 1.6. Environmental enrichment and brain mechanisms 8 1.7. Types of environmental enrichment: standard, physical, cognitive, and social environmental enrichment 9 1.8. Neural substrates and behavioral sensitization 12 1.9. c-Fos immunoreactivity and neuronal activation 14 1.10. The IL-NAc pathway versus the VTA-NAc pathway for reinforcement 14 1.11. Hypothesis 15 2. Specific research aims 17 3. Materials and Methods 19 3.1. Animals 19 3.2. Apparatus 19 3.3. General procedure 20 3.4. Housing styles and environmental enrichment 21 3.5. Standard housing 22 3.6. Standard environmental enrichment 22 3.7. Physical environmental enrichment 23 3.8. Social environmental enrichment 23 3.9. Cognitive environmental enrichment 24 3.10. Virus microinjection and optical fiber implantation 25 3.11. Viral vectors and optical stimulation 25 3.12. Drugs 26 3.13. Surgical drugs 26 3.14. Perfusion and tissue slicing 27 3.15. Data and statistical analysis 28 4. Results 29 5. Discussion 41 References 48

    References
    Acevedo, S. F., & Raber, J. (2011). Histamine-dependent behavioral response to methamphetamine in 12-month-old male mice. Brain Res, 1393, 23-30. https://doi.org/10.1016/j.brainres.2011.03.070
    Adinoff, B. (2004). Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry, 12(6), 305-320. https://doi.org/10.1080/10673220490910844
    Aston-Jones, G., Smith, R. J., Moorman, D. E., & Richardson, K. A. (2009). Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology, 56 Suppl 1(Suppl 1), 112-121. https://doi.org/10.1016/j.neuropharm.2008.06.060
    Baumans, V. (2005). Environmental enrichment for laboratory rodents and rabbits: requirements of rodents, rabbits, and research. ILAR. J, 46(2), 162-170. http://www.ncbi.nlm.nih.gov/pubmed/15775025
    Bechara, R. G., & Kelly, A. M. (2013). Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats. Behav Brain Res, 245, 96-100. https://doi.org/10.1016/j.bbr.2013.02.018
    Beck, C. H. M., & Fibiger, H. C. (1995). Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: With and without diazepam pretreatment. The Journal of Neuroscience, 15(1), 709-720.
    Bekinschtein, P., Oomen, C. A., Saksida, L. M., & Bussey, T. J. (2011). Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol, 22(5), 536-542. https://doi.org/S1084-9521(11)00088-7 [pii];10.1016/j.semcdb.2011.07.002 [doi]
    Bennett, E. L., Rosenzweig, M. R., & Diamond, M. C. (1969). Rat brain: effects of environmental enrichment on wet and dry weights. Science, 163(3869), 825-826. https://doi.org/10.1126/science.163.3869.825
    Bezard, E., Dovero, S., Belin, D., Duconger, S., Jackson-Lewis, V., Przedborski, S., Piazza, P. V., Gross, C. E., & Jaber, M. (2003). Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci, 23(35), 10999-11007. https://doi.org/10.1523/JNEUROSCI.23-35-10999.2003
    Birch, A. M., McGarry, N. B., & Kelly, A. M. (2013). Short-term environmental enrichment, in the absence of exercise, improves memory, and increases NGF concentration, early neuronal survival, and synaptogenesis in the dentate gyrus in a time-dependent manner. Hippocampus, 23(6), 437-450. https://doi.org/10.1002/hipo.22103
    Brenes, J. C., Lackinger, M., Hoglinger, G. U., Schratt, G., Schwarting, R. K., & Wohr, M. (2016). Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats. J Comp Neurol, 524(8), 1586-1607. https://doi.org/10.1002/cne.23842
    Buttner, A. (2011). Review: The neuropathology of drug abuse. Neuropathol Appl Neurobiol, 37(2), 118-134. https://doi.org/10.1111/j.1365-2990.2010.01131.x
    Cadoni, C., Solinas, M., & Di Chiara, G. (2000). Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. Eur J Pharmacol, 388(1), 69-76. https://doi.org/10.1016/s0014-2999(99)00824-9
    Cadoni, C., Solinas, M., Valentini, V., & Di Chiara, G. (2003). Selective psychostimulant sensitization by food restriction: differential changes in accumbens shell and core dopamine. Eur J Neurosci, 18(8), 2326-2334. https://doi.org/10.1046/j.1460-9568.2003.02941.x
    Carlsson, A. (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1(3), 179-186. http://research.bmn.com/medline/search/record?uid=MDLN.89286857
    Cowansage, K. K., LeDoux, J. E., & Monfils, M. H. (2010). Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr. Mol. Pharmacol, 3(1), 12-29. https://doi.org/EPub-Abstract-CMP-03 [pii]
    Darwin, C. (1859). The origin of species and the descent of man. Modern Library.
    Decker, S., Grider, G., Cobb, M., Li, X. P., Huff, M. O., El-Mallakh, R. S., & Levy, R. S. (2000). Open field is more sensitive than automated activity monitor in documenting ouabain-induced hyperlocomotion in the development of an animal model for bipolar illness. Prog. Neuropsychopharmacol. Biol. Psychiatry, 24(3), 455-462. http://www.ncbi.nlm.nih.gov/pubmed/10836492
    Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. U. S. A, 85(14), 5274-5278. http://www.ncbi.nlm.nih.gov/pubmed/2899326
    Diamond, M. C., Law, F., Rhodes, H., Lindner, B., Rosenzweig, M. R., Krech, D., & Bennett, E. L. (1966). Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol, 128(1), 117-126. https://doi.org/10.1002/cne.901280110
    El Rawas, R., Thiriet, N., Lardeux, V., Jaber, M., & Solinas, M. (2009). Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology (Berl), 203(3), 561-570. https://doi.org/10.1007/s00213-008-1402-6
    Ferreira, S., Soares, L. M., Lira, C. R., Yokoyama, T. S., Engi, S. A., Cruz, F. C., & Leao, R. M. (2021). Ethanol-induced locomotor sensitization: Neuronal activation in the nucleus accumbens and medial prefrontal cortex. Neurosci Lett, 749, 135745. https://doi.org/10.1016/j.neulet.2021.135745
    Fibiger, H. C., & Phillips, A. G. (1988). Mesocorticolimbic dopamine systems and reward. Annals of New York Academy of Sciences, 537, 206-215.
    Francis, D. D., Diorio, J., Plotsky, P. M., & Meaney, M. J. (2002). Environmental enrichment reverses the effects of maternal separation on stress reactivity. J. Neurosci, 22(18), 7840-7843. http://www.ncbi.nlm.nih.gov/pubmed/12223535 (Not in File)
    Fukushiro, D. F., Josino, F. S., Saito, L. P., Costa, J. M., Zanlorenci, L. H., Berro, L. F., Fernandes-Santos, L., Morgado, F., Mari-Kawamoto, E., & Frussa-Filho, R. (2012). Differential effects of intermittent and continuous exposure to novel environmental stimuli on the development of amphetamine-induced behavioral sensitization in mice: implications for addiction. Drug Alcohol Depend, 124(1-2), 135-141. https://doi.org/10.1016/j.drugalcdep.2011.12.026
    Gergerlioglu, H. S., Oz, M., Demir, E. A., Nurullahoglu-Atalik, K. E., & Yerlikaya, F. H. (2016). Environmental enrichment reverses cognitive impairments provoked by Western diet in rats: Role of corticosteroid receptors. Life Sci, 148, 279-285. https://doi.org/10.1016/j.lfs.2016.02.011
    Giorgi, O., Piras, G., Lecca, D., & Corda, M. G. (2005). Behavioural effects of acute and repeated cocaine treatments: a comparative study in sensitisation-prone RHA rats and their sensitisation-resistant RLA counterparts. Psychopharmacology (Berl), 180(3), 530-538. http://www.ncbi.nlm.nih.gov/pubmed/15772864
    Girbovan, C., & Plamondon, H. (2013). Environmental enrichment in female rodents: considerations in the effects on behavior and biochemical markers. Behav Brain Res, 253, 178-190. https://doi.org/10.1016/j.bbr.2013.07.018
    Green, T. A., Alibhai, I. N., Roybal, C. N., Winstanley, C. A., Theobald, D. E., Birnbaum, S. G., Graham, A. R., Unterberg, S., Graham, D. L., Vialou, V., Bass, C. E., Terwilliger, E. F., Bardo, M. T., & Nestler, E. J. (2010). Environmental enrichment produces a behavioral phenotype mediated by low cyclic adenosine monophosphate response element binding (CREB) activity in the nucleus accumbens. Biol Psychiatry, 67(1), 28-35. https://doi.org/10.1016/j.biopsych.2009.06.022
    Hamilton, G. F., Jablonski, S. A., Schiffino, F. L., St Cyr, S. A., Stanton, M. E., & Klintsova, A. Y. (2014). Exercise and environment as an intervention for neonatal alcohol effects on hippocampal adult neurogenesis and learning. Neuroscience, 265, 274-290. https://doi.org/10.1016/j.neuroscience.2014.01.061
    Hamilton, K. R., Elliott, B. M., Berger, S. S., & Grunberg, N. E. (2014). Environmental enrichment attenuates nicotine behavioral sensitization in male and female rats. Exp Clin Psychopharmacol, 22(4), 356-363. https://doi.org/10.1037/a0037205
    Hammami-Abrand Abadi, A., Miladi-Gorji, H., & Bigdeli, I. (2016). Effect of environmental enrichment on physical and psychological dependence signs and voluntary morphine consumption in morphine-dependent and morphine-withdrawn rats. Behav Pharmacol, 27(2-3 Spec Issue), 270-278. https://doi.org/10.1097/FBP.0000000000000197
    Hebb, D. O. (1949). The effects of early experience on problem-solving at maturity. American Psychologist 2.
    Hellemans, K. G., Benge, L. C., & Olmstead, M. C. (2004). Adolescent enrichment partially reverses the social isolation syndrome. Brain Res Dev Brain Res, 150(2), 103-115. https://doi.org/10.1016/j.devbrainres.2004.03.003
    Huang, F. L., Huang, K. P., & Boucheron, C. (2007). Long-term enrichment enhances the cognitive behavior of the aging neurogranin null mice without affecting their hippocampal LTP. Learn Mem, 14(8), 512-519. https://doi.org/10.1101/lm.636107
    Hurley, S. W., & Carelli, R. M. (2020). Activation of Infralimbic to Nucleus Accumbens Shell Pathway Suppresses Conditioned Aversion in Male But Not Female Rats. J Neurosci, 40(36), 6888-6895. https://doi.org/10.1523/JNEUROSCI.0137-20.2020
    Huzard, D., Mumby, D. G., Sandi, C., Poirier, G. L., & van der Kooij, M. A. (2015). The effects of extrinsic stress on somatic markers and behavior are dependent on animal housing conditions. Physiol Behav, 151, 238-245. https://doi.org/10.1016/j.physbeh.2015.07.018
    Hyman, C., Hofer, M., Barde, Y. A., Juhasz, M., Yancopoulos, G. D., Squinto, S. P., & Lindsay, R. M. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350(6315), 230-232. https://doi.org/10.1038/350230a0
    Ji, M. H., Wang, Z. Y., Sun, X. R., Tang, H., Zhang, H., Jia, M., Qiu, L. L., Zhang, G. F., Peng, Y. G., & Yang, J. J. (2017). Repeated Neonatal Sevoflurane Exposure-Induced Developmental Delays of Parvalbumin Interneurons and Cognitive Impairments Are Reversed by Environmental Enrichment. Mol Neurobiol, 54(5), 3759-3770. https://doi.org/10.1007/s12035-016-9943-x
    Kim, M. S., Yu, J. H., Kim, C. H., Choi, J. Y., Seo, J. H., Lee, M. Y., Yi, C. H., Choi, T. H., Ryu, Y. H., Lee, J. E., Lee, B. H., Kim, H., & Cho, S. R. (2016). Environmental enrichment enhances synaptic plasticity by internalization of striatal dopamine transporters. J Cereb Blood Flow Metab, 36(12), 2122-2133. https://doi.org/10.1177/0271678X15613525
    Laviola, G., Hannan, A. J., Macri, S., Solinas, M., & Jaber, M. (2008). Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis, 31(2), 159-168. https://doi.org/10.1016/j.nbd.2008.05.001
    Lewis, M. H. (2004). Environmental complexity and central nervous system development and function. Ment. Retard. Dev. Disabil. Res. Rev, 10(2), 91-95. https://doi.org/10.1002/mrdd.20017 [doi]
    Marques, J. M., & Olsson, I. A. (2007). The effect of preweaning and postweaning housing on the behaviour of the laboratory mouse (Mus musculus). Laboratory Animals, 41, 92-102.
    Miller, C. A., & Marshall, J. F. (2005). Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat. Eur. J. Neurosci, 21(5), 1385-1393. http://www.ncbi.nlm.nih.gov/pubmed/15813948
    Mora-Gallegos, A., Rojas-Carvajal, M., Salas, S., Saborio-Arce, A., Fornaguera-Trias, J., & Brenes, J. C. (2015). Age-dependent effects of environmental enrichment on spatial memory and neurochemistry. Neurobiol Learn Mem, 118, 96-104. https://doi.org/10.1016/j.nlm.2014.11.012
    Nag, N., Moriuchi, J. M., Peitzman, C. G., Ward, B. C., Kolodny, N. H., & Berger-Sweeney, J. E. (2009). Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res, 196(1), 44-48. https://doi.org/10.1016/j.bbr.2008.07.008
    Nett, K. E., Zimbelman, A. R., McGregor, M. S., Alizo Vera, V., Harris, M., & LaLumiere, R. T. (2023). Infralimbic projections to the nucleus accumbens shell and amygdala regulate the encoding of cocaine extinction learning. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2023-22.2022
    Nithianantharajah, J., & Hannan, A. J. (2006). Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci, 7(9), 697-709. https://doi.org/10.1038/nrn1970
    Nordquist, R. E., Vanderschuren, L. J., Jonker, A. J., Bergsma, M., de Vries, T. J., Pennartz, C. M., & Voorn, P. (2008). Expression of amphetamine sensitization is associated with recruitment of a reactive neuronal population in the nucleus accumbens core. Psychopharmacology (Berl), 198(1), 113-126. https://doi.org/10.1007/s00213-008-1100-4
    Oades, R. D., & Halliday, G. M. (1987). Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res, 434(2), 117-165. http://research.bmn.com/medline/search/record?uid=MDLN.87215201
    Olsson, I. A., & Dahlborn, K. (2002). Improving housing conditions for laboratory mice: a review of "environmental enrichment". Lab Anim, 36(3), 243-270. http://www.ncbi.nlm.nih.gov/pubmed/12144738
    Pavkovic, Z., Smiljanic, K., Kanazir, S., Milanovic, D., Pesic, V., & Ruzdijic, S. (2017). Brain molecular changes and behavioral alterations induced by propofol anesthesia exposure in peripubertal rats. Paediatr Anaesth, 27(9), 962-972. https://doi.org/10.1111/pan.13182
    Peleg-Raibstein, D., Yee, B. K., Feldon, J., & Hauser, J. (2009). The amphetamine sensitization model of schizophrenia: relevance beyond psychotic symptoms? Psychopharmacology (Berl), 206(4), 603-621. https://doi.org/10.1007/s00213-009-1514-7 [doi]
    Peters, J., LaLumiere, R. T., & Kalivas, P. W. (2008). Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci, 28(23), 6046-6053. https://doi.org/10.1523/JNEUROSCI.1045-08.2008
    Pierce, R. C., & Kalivas, P. W. (1995). Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J Pharmacol Exp Ther, 275(2), 1019-1029. https://www.ncbi.nlm.nih.gov/pubmed/7473128
    Pierce, R. C., & Kalivas, P. W. (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Research Reviews, 25, 192-216.
    Puhl, M. D., Blum, J. S., Acosta-Torres, S., & Grigson, P. S. (2012). Environmental enrichment protects against the acquisition of cocaine self-administration in adult male rats, but does not eliminate avoidance of a drug-associated saccharin cue. Behav. Pharmacol, 23(1), 43-53. https://doi.org/10.1097/FBP.0b013e32834eb060 [doi]
    Robinson, T. E., & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res, 396(2), 157-198. http://www.ncbi.nlm.nih.gov/pubmed/3527341
    Robinson, T. E., & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci, 363(1507), 3137-3146. https://doi.org/10.1098/rstb.2008.0093
    Robinson, T. E., & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47 Suppl 1, 33-46. http://www.ncbi.nlm.nih.gov/pubmed/15464124
    Rosenzweig, M. R., & Bennett, E. L. (1969). Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev Psychobiol, 2(2), 87-95. https://doi.org/10.1002/dev.420020208
    Rueda, A. V., Teixeira, A. M., Yonamine, M., & Camarini, R. (2012). Environmental enrichment blocks ethanol-induced locomotor sensitization and decreases BDNF levels in the prefrontal cortex in mice. Addict. Biol, 17(4), 736-745. https://doi.org/10.1111/j.1369-1600.2011.00408.x [doi]
    Sakalem, M. E., Seidenbecher, T., Zhang, M., Saffari, R., Kravchenko, M., Wordemann, S., Diederich, K., Schwamborn, J. C., Zhang, W., & Ambree, O. (2017). Environmental enrichment and physical exercise revert behavioral and electrophysiological impairments caused by reduced adult neurogenesis. Hippocampus, 27(1), 36-51. https://doi.org/10.1002/hipo.22669
    Segovia, G., del Arco, A., & Mora, F. (2009). Environmental enrichment, prefrontal cortex, stress, and aging of the brain. J Neural Transm (Vienna), 116(8), 1007-1016. https://doi.org/10.1007/s00702-009-0214-0
    Solinas, M., Thiriet, N., Chauvet, C., & Jaber, M. (2010). Prevention and treatment of drug addiction by environmental enrichment. Prog. Neurobiol, 92(4), 572-592. https://doi.org/S0301-0082(10)00145-0 [pii];10.1016/j.pneurobio.2010.08.002 [doi]
    Solinas, M., Thiriet, N., El, R. R., Lardeux, V., & Jaber, M. (2009). Environmental enrichment during early stages of life reduces the behavioral, neurochemical, and molecular effects of cocaine. Neuropsychopharmacology, 34(5), 1102-1111. https://doi.org/npp200851 [pii];10.1038/npp.2008.51 [doi]
    Takahashi, T., Shimizu, K., Shimazaki, K., Toda, H., & Nibuya, M. (2014). Environmental enrichment enhances autophagy signaling in the rat hippocampus. Brain Res, 1592, 113-123. https://doi.org/S0006-8993(14)01428-0 [pii];10.1016/j.brainres.2014.10.026 [doi]
    Thanos, P. K., Hamilton, J., O'Rourke, J. R., Napoli, A., Febo, M., Volkow, N. D., Blum, K., & Gold, M. (2016). Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior. Oncotarget, 7(15), 19111-19123. https://doi.org/10.18632/oncotarget.8088
    Thiel, K. J., Sanabria, F., Pentkowski, N. S., & Neisewander, J. L. (2009). Anti-craving effects of environmental enrichment. Int. J. Neuropsychopharmacol, 12(9), 1151-1156. https://doi.org/S1461145709990472 [pii];10.1017/S1461145709990472 [doi]
    Tian, J., Yan, Y., Xi, W., Zhou, R., Lou, H., Duan, S., Chen, J. F., & Zhang, B. (2018). Optogenetic Stimulation of GABAergic Neurons in the Globus Pallidus Produces Hyperkinesia. Front Behav Neurosci, 12, 185. https://doi.org/10.3389/fnbeh.2018.00185
    van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nat Rev Neurosci, 1(3), 191-198. https://doi.org/10.1038/35044558
    Vecchiola, A., Collyer, P., Figueroa, R., Labarca, R., Bustos, G., & Magendzo, K. (1999). Differential regulation of mu-opioid receptor mRNA in the nucleus accumbens shell and core accompanying amphetamine behavioral sensitization. Brain Res Mol Brain Res, 69(1), 1-9. https://doi.org/10.1016/s0169-328x(99)00044-3
    Vezina, P. (2004). Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev, 27(8), 827-839. https://doi.org/10.1016/j.neubiorev.2003.11.001 [doi];S0149763403001398 [pii]
    Wagner, A. K., Chen, X., Kline, A. E., Li, Y., Zafonte, R. D., & Dixon, C. E. (2005). Gender and environmental enrichment impact dopamine transporter expression after experimental traumatic brain injury. Exp Neurol, 195(2), 475-483. https://doi.org/10.1016/j.expneurol.2005.06.009
    Wise, R. A. (2008). Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox. Res, 14(2-3), 169-183. https://doi.org/10.1007/BF03033808 [doi]
    Wise, R. A. (2009). Roles for nigrostriatal--not just mesocorticolimbic--dopamine in reward and addiction. Trends Neurosci, 32(10), 517-524. https://doi.org/S0166-2236(09)00132-5 [pii];10.1016/j.tins.2009.06.004 [doi]
    Young, D., Lawlor, P. A., Leone, P., Dragunow, M., & During, M. J. (1999). Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med, 5(4), 448-453. https://doi.org/10.1038/7449
    Zhu, J., Green, T., Bardo, M. T., & Dwoskin, L. P. (2004). Environmental enrichment enhances sensitization to GBR 12935-induced activity and decreases dopamine transporter function in the medial prefrontal cortex. Behav Brain Res, 148(1-2), 107-117. https://doi.org/10.1016/s0166-4328(03)00190-6

    QR CODE
    :::