跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林峯億
Feng-yi Lin
論文名稱: 連續模糊系統平方和穩定性分析-尤拉齊次多項式定理
Stabilization Analysis of Polynomial Fuzzy Systems via SOS - Euler's Theorem for Homogeneous Functions
指導教授: 羅吉昌
Ji-chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: Takagi-Sugeno模糊系統參數相依齊次多項式尤拉齊次多項式定理平方和非二次穩定
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究連續模糊控制系統的非二次穩定(non-quadratic
    stability) 條件,關於擴展狀態決定於高階的非二次李亞普諾夫函數,其函數形式是V(x) = 1/2(x^TP^(-1)(x)x),其中條件P^(-1)(x) > 0取決於P(x)x 是一正定的梯度向量(gradient vector)。遺憾的是,此梯度向量P(x)x 是一非凸面體(nonconvex) 的問題。因此可控制的模糊系統之穩定性檢測條件,需要使用尤拉齊次多項式定理,並使用其定理之齊次性質與波雅定理(Pólya theorem) 之代數性質,以平方和方法(sum of squares) 去檢驗非凸面體問題,使得其模擬系統之空間解更寬鬆。最後,模擬其多項式模糊系統,表現出本論文提出之方法是有效的。


    Extension of the state dependent Riccati inequalities to non-quadratic Lyapunov function of the form V(x) = 1/2(x^TP^(-1)(x)x), with P^(-1)(x) > 0 requires that P(x)x is a gradient of positive definite function. Unfortunately, the test of P^(-1)(x)x is nonconvex problem. Thus this thesis studies stabilization problems of the polynomial fuzzy systems via homogeneous Lyapunov functions exploiting the Euler’s homogeneity property and algebraic property of Pólya to construct a family of SOS polynomials that solves the nonconvexity problem and releases conservatism as well. Lastly, examples of polynomial fuzzy systems are demonstrated to show the proposed method being effective and effective.

    一、 簡介............. 1 1.1 文獻回顧 . . . . . . . . 1 1.2 研究動機 . . . . . . . . 2 1.3 論文結構 . . . . . . . . 3 1.4 符號標記 . . . . . . . . 4 1.5 預備定理 . . . . . . . . 6 二、 連續系統架構與穩定度條件 ........... 7 2.1 連續系統架構 . . . . . . . 7 2.2 連續模糊閉迴路系統之穩定檢測條件(一) . . . 8 2.3 尤拉齊次多項式定理 . . . . . . . 11 2.4 連續模糊閉迴路系統之穩定檢測條件(二) . . . 12 三、 穩定性檢測條件之寬鬆性.......... 17 3.1 波雅定理 . . . . . . . . 17 3.2 增加激發強度 µ 之冪次 . . . . . . 18 3.3 平方和寬鬆法 . . . . . . . 19 3.4 平方和寬鬆法穩定性檢測條件(一) . . . 22 3.5 平方和寬鬆法穩定性檢測條件(二) . . . 23 四、 電腦模擬................ 27 4.1 模擬題目(一) . . . . . . . . 27 4.2 模擬題目(二) . . . . . . . . 31 4.3 模擬題目(三) . . . . . . . . 35 4.4 模擬題目(四) . . . . . . . . 38 4.5 模擬題目(五) . . . . . . . . 43 4.6 模擬題目(六) . . . . . . . . 48 4.7 模擬題目(七) . . . . . . . . 54 五、 結論與未來方向.......... 59 5.1 結論 . . . . . . . . . . 59 5.2 未來研究方向 . . . . . . . 60 附錄一 ................ 61 A.1 結合波雅定理與寬鬆變數矩陣 . . . . 61 A.2 平方和寬鬆法穩定性檢測條件(二) . . . 64 參考文獻.................. 69

    [1] T. Takagi and M. Sugeno. Fuzzy identification of systems and its
    applications to modelling and control. IEEE Trans. Syst., Man,
    Cybern., 15(1):116–132, January 1985.
    [2] M. Sugeno and G.T. Kang. Structure identification of fuzzy model.
    Fuzzy Set and Systems, 28:15–33, 1988.
    [3] K. Tanaka and M. Sugeno. Stability analysis and design of fuzzy
    control systems. Fuzzy Set and Systems, 45:135–156, 1992.
    [4] W.M. Haddad and D.S. Bernstein. Explicit construction of
    quadratic Lyapunov functions for the small gain, positive, circle
    and Popov theorems and their application to robust stability. Part
    II: discrete-time theory. Int’l J. of Robust and Nonlinear Control,
    4:249–265, 1994.
    [5] P.A. Parrilo. Structured Semidefinite Programs and Semialgebraic
    Geometry Methods in Robustness and Optimization. PhD thesis,
    Caltech, Pasadena, CA., May 2000.
    [6] S. Prajna, A. Papachristodoulou, and P. Parrilo. Introducing SOSTOOLS:
    a general purpose sum of squares programming solver. In
    Proc of IEEE CDC, pages 741–746, Montreal, Ca, July 2002.
    [7] S. Prajna, A. Papachristodoulou, and et al. New developments on
    sum of squares optimization and SOSTOOLS. In Proc. the 2004
    American Control Conference, pages 5606–5611, 2004.
    [8] A. Sala and C. Arino. Polynomial fuzzy models for nonlinear control:
    A Taylor series approach. IEEE Trans. Fuzzy Systems, 17(6):
    1284–1295, December 2009.
    [9] H. Ichihara. Observer design for polynomial systems using convex
    optimization. In Proc. of the 46th IEEE CDC, pages 5347–5352,
    New Orleans, LA, December 2007.
    [10] J. Xu, K.Y. Lum, and et al. A SOS-based approach to residual
    generators for discrete-time polynomial nonlinear systems. In Proc.
    of the 46th IEEE CDC, pages 372–377, New Orleans, LA, December
    2007.
    [11] J. Xie, L. Xie, and Y. Wang. Synthesis of discrete-time nonlinear
    systems: A SOS approach. In Proc. of the 2007 American Control
    Conference, pages 4829–4834, New York, NY, July 2007.
    [12] K. Tanaka, H. Yoshida, and et al. A sum of squares approach to
    stability analysis of polynomial fuzzy systems. In Proc. of the 2007
    American Control Conference, pages 4071–4076, New York, NY,
    July 2007.
    [13] K. Tanaka, H. Yoshida, and et al. Stabilization of polynomial fuzzy
    systems via a sum of squares approach. In Proc. of the 22nd Int’l
    Symposium on Intelligent Control Part of IEEE Multi-conference
    on Systems and Control, pages 160–165, Singapore, October 2007.
    [14] H. Ichihara and E. Nobuyama. A computational approach to state
    feedback synthesis for nonlinear systems based on matrix sum of
    squares relaxations. In Proc. 17th Int’l Symposium on Mathematical
    Theory of Network and Systems, pages 932–937, Kyoto, Japan,
    2006.
    [15] C.W.J. Hol and C.W. Scherer. Sum of squares relaxations for polynomial
    semidefinite programming. In Proc.of MTNS, pages 1–10,
    2004.
    [16] E. Kim and H. Lee. New approaches to relaxed quadratic stability
    condition of fuzzy control systems. IEEE Trans. Fuzzy Systems,
    8(5):523–534, October 2000.
    [17] X.D. Liu and Q.L. Zhang. New approaches to H1 controller designs
    based on fuzzy observers for T-S fuzzy systems via LMI. Automatica,
    39:1571–1582, June 2003.
    [18] C.H. Fang, Y.S. Liu, S.W. Kau, L. Hong, and C.H. Lee. A new
    LMI-based approach to relaxed quadratic stabilization of T-S fuzzy
    control systems. IEEE Trans. Fuzzy Systems, 14(3):386–397, June
    2006.
    [19] T. M. Guerra and L. Vermeiren. LMI-based relaxed nonquadratic
    stabilization conditions for nonlinear systems in the Takagi-
    Sugeno’s form. Automatica, 40:823–829, 2004.
    [20] B.C. Ding, H. Sun, and P Yang. Further studies on LMI-based
    relaxed stabilization conditions for nonlinear systems in Takagisugeno’s
    form. Automatica, 43:503–508, 2006.
    [21] B. Ding and B. Huang. Reformulation of LMI-based stabilization
    conditions for non-linear systems in Takagi-Sugeno’s form. Int’l J.
    of Systems Science, 39(5):487–496, 2008.
    [22] T. M. Guerra and L. Vermeiren. Conditions for non quadratic stabilization
    of discrete fuzzy models. In 2001 IFAC Conference, 2001.
    [23] V.F. Montagner, R.C.L.F Oliveira, and P.L.D. Peres. Necessary
    and sufficient LMI conditions to compute quadratically stabilizing
    state feedback controller for Takagi-sugeno systems. In Proc. of the
    2007 American Control Conference, pages 4059–4064, July 2007.
    [24] V.F. Montagner, R.C.L.F Oliveira, and P.L.D. Peres. Convergent
    LMI relaxations for quadratic stabilization and H1 control
    of Takagi-sugeno fuzzy systems. IEEE Trans. Fuzzy Systems, (4):
    863–873, August 2009.
    [25] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang. A sum of
    squares approach to modeling and control of nonlinear dynamical
    systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Systems,
    17(4):911–922, August 2009.
    [26] C. Ebenbauer, J. Renz, and F. Allgower. Polynomial Feedback and
    Observer Design using Nonquadratic Lyapunov Functions.
    [27] G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities, second
    edition. Cambridge University Press, Cambridge, UK., 1952.
    [28] V. Power and B. Reznick. A new bound for Pólya’s Theorem with
    applications to polynomials positive on polyhedra. J. Pure Appl.
    Algebra, 164:221–229, 2001.
    [29] J. de Loera and F. Santos. An effect version of Pólya’s Theorem on
    positive definite forms. J. Pure Appl. Algebra, 108:231–240, 1996.
    [30] S. Prajna, A. Papachristodoulou, and F. Wu. Nonlinear control
    synthesis by sum of squares optimization: A Lyapunov-based Approach.
    In Proc. 5th Asian Control Conference, pages 157–165, July
    2004.
    [31] J.C. Lo and M.Z. Liu. Exact solutions to fuzzy PD-LMIs via SOS.
    In The 2010 World Congress on Computational Intelligence; FUZZIEEE
    International Conference on Fuzzy Systems, pages 1352–1357,
    Barcelona, SP, July 2010.
    [32] L.K. Lam and L.D. Seneviratne. Stability analysis for polynomial
    fuzzy-model-based control systems under perfect-imperfect premise
    matching. IET Control Theory & Appl., 5(15):1689–1697, 2011.
    [33] H.K. Lam. Polynomial fuzzy-model-based control systems: stability
    analysis via piecewise-linear membership function. IEEE Trans.
    Fuzzy Systems, 19(3):588–593, 2011.

    QR CODE
    :::