| 研究生: |
洪珮芳 Pei-Fang Hung |
|---|---|
| 論文名稱: |
高分子光柵應用於太陽光分光元件 |
| 指導教授: |
韋安琪
An-Chi Wei, |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 聚亞醯胺 、光柵 、光微影技術 、分光元件 |
| 外文關鍵詞: | polyimide, division element, grating, Lithography |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因全球暖化和能源危機對再生能源的需求,太陽能成為乾淨能源的發展重點。然而,太陽光譜具有寬波段特性,對於種類不同之太陽能電池其主要光電轉換波段也不同,故發展太陽光分光技術有助於太陽光能利用之最佳化。
本論文開發一具有耐熱性之太陽能分光元件,並於其上設計特定之光柵,使太陽光譜藉由該分光元柵而達到分光的效果。在此選用聚亞醯胺作為分光元件之材料,並以光微影技術方式製作光柵圖案。分光元件製作完成後,則運用太陽光模擬器量測元件效率,並與模擬結果進行分析比較。
藉由理論推導、軟體模擬和量測實驗,證實聚亞醯胺穿透率達94%,適合為光學元件。且光柵具有分光功能,繞射效率量測值:在405nm,其繞射效率69%、在635nm,其繞射效率46%,在830nm,其繞射效率36%,與模擬結果趨勢相符。藉由熱分析已驗證元件溫度300℃以下為穩定態,故此元件適用於戶外。
In this research, polyimide is the substrate of the spectrum splitter because of its thermal stability, while the designed grating on the substrate is for splitting sun light. To realize the pattern of the grating, optical lithography has been used. Then, the fabricated spectrum splitter has been measured by using a solar simulator, and the measured results have been compared with those from simulation.
The experiment results have shown that polyimide has the transmittance of 94% and is appropriate for optical applications. The diffraction efficiency of the spectrum splitter has been measured by multiple laser beams with the values of 69% at 405nm, 46% at 635nm, and 36% at 830nm, agreeing with the trend predicted in simulation. Also, according to the thermal experiment, the fabricated spectrum splitter is stable below 300 ℃. Thus, this spectrum splitter is suitable for outdoor usages.
[1] W. Palz, Power for the World: The Emergence of Electricity from the Sun. Pan Stanford Publishing, 2010.
[2] S. A. Omer and D. G. In, “Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation,” Energy Conversion & Management, vol. 41, pp. 737–756, 2000.
[3] A. A. Mohamad, “High efficiency solar air heater,” Sol. Energy, vol. 60, no. 2, pp. 71–76, 1997.
[4] E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 8, pp. 1182–1194, 2009.
[5] W. G. J. H. M. Van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. Mccormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators – A review of recent results,” OPTICS EXPRESS. vol. 16, no. 26, pp. 21773–21792, 2008.
[6] H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano, vol. 5, no. 9, pp. 7055–7060, 2011.
[7] A. Schüler, J. Boudaden, P. Oelhafen, E. De Chambrier, C. Roecker, and J. L. Scartezzini, “Thin film multilayer design types for colored glazed thermal solar collectors,” Sol. Energy Mater. Sol. Cells, vol. 89, no. 2–3, pp. 219–231, 2005.
[8] P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator.,” Opt. Express, vol. 18, no. 9, pp. A25–A40, 2010.
[9] A. J. W. Whang, Y. Y. Chen, and B. Y. Wu, “Innovative design of cassegrain solar concentrator system for indoor illumination utilizing chromatic aberration to filter out ultraviolet and infrared in sunlight,” Sol. Energy, vol. 83, no. 8, pp. 1115–1122, 2009.
[10] D. Vincenzi, A. Busato, M. Stefancich, and G. Martinelli, “Concentrating PV system based on spectral separation of solar radiation,” Phys. Status Solidi Appl. Mater. Sci., vol. 206, no. 2, pp. 375–378, 2009.
[11] K. Xiong, S. Lu, J. Dong, T. Zhou, D. Jiang, R. Wang, and H. Yang, “Light-splitting photovoltaic system utilizing two dual-junction solar cells,” Sol. Energy, vol. 84, no. 12, pp. 1975–1978, 2010.
[12] J. Nilsson, R. Leutz, and E. Klampaftis, “Micro-structured reflector surfaces for a stationary asymmetric parabolic solar concentrator,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 6, pp. 525–533, 2007.
[13] U. Wagemann, J. Schulat, and C. G. Stojanoff, “Fabrication and test of a holographic concentrator for two color PV-operation,” SPIE. vol. 2255, pp. 812–821.
[14] Y. Xia and G. M. G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci., no. 12, 1998.
[15] S. I. Na, S. S. Kim, J. Jo, S. H. Oh, J. Kim, and D. Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater., vol. 18, no. 24, pp. 3956–3963, 2008.
[16] R. E. Bird and C. Riordan, “Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres,” J. Clim. Appl. Meteorol., vol. 25, pp. 87–97, 1986.
[17] X. Zhang and Z. Sun, “Effects of vacancy structural defects on the thermal conductivity of silicon thin films,” J. Semicond., vol. 32, no. 5, p. 053002, 2011.
[18] 李正中, 薄膜光學與鍍膜技術, 第五版. 2006.
[19] 白木, 靖寬, 吉田, 真史, 金原粲, 王建義, “薄膜工程學,” 全華科技出版社, 台灣, 2004.
[20] E. Hecht, “Optics, 4th,” Int. Ed. Addison-Wesley, San Fr., vol. 3, 2002.
[21] D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, “Diffractive optics: design, fabrication, and test,” 2004.
[22] K. L. Mittal, Polyimides: synthesis, characterization, and applications, vol. 1. Springer Science & Business Media, 2013.
[23] web page from:TORAY:http://www.toray.co.jp/english/electronic/products/pro_b001.html.