| 研究生: |
陳加展 Jan-Jim Chen |
|---|---|
| 論文名稱: |
熱效應對於離子束製作矽氧化層與表面型態的影響 The thermal effect of the Ar ion beam induced the topography abd the oxidation of silicon |
| 指導教授: |
李敬萱
Chin Shung Lee 李雄 shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 氧化矽 、離子束 |
| 外文關鍵詞: | silicon oxide, IBIO |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體產業中為了製作高品質的二氧化矽氧化絕緣層,利用了許多不同方法來製作。在本篇論文中,是利用IBIO方式將Si(100)放置於高真空環境後,在高溫下(650℃)將其周圍曝氧,接著利用Ar離子束撞擊氧氣,形成二氧化矽絕緣層。
為了檢測氧氣確實能有效被Ar離子束推入使其形成氧化層,利用XPS(X-ray Photoelectron Spectroscopy)來研究材料的化學組成,確定矽內層能有二氧化矽的存在。同時利用原子力顯微鏡(Atomic Force Microscope ,AFM)檢測材料表面,觀察實驗前後矽表面的變化情形。
在XPS檢測的結果中,經由全譜的分析我們知道在試片的表面是含有C、Si和O元素的訊號,並且在針對Si元素作微區分析後發現,在束縛能99eV與103eV有明顯的訊號出現;AFM的結果中顯示,在高溫下利用離子束撞擊於矽表面時,表面分子會被濺離而產生凹坑不平的表面,且表面起伏的隨著曝氧濃度增大而變小,也隨著電流密度強弱而改變。
In the industry of semiconductor it used many ways for well quality of SiO2. In my paper I use the way of IBIO to make it. First I put my sample into the vacuum chamber, second the sample is heated up 650℃, then I put oxygen into the chamber around the sample, final the ion of Ar bombardment the oxygen to put into silicon.
In order to know the oxygen can putted into the silicon to form SiO2, I used X-ray Photoelectron Spectroscopy(XPS) to study the composition of the sample to sure it is existed SiO2. At the same time I also used Atomic Force Microscope(AFM) to measure the topography to observe the change of the sample after experiment.
In the result of XPS, we can know that it has the element signal of the silicon、oxygen and carbon, then we analyze the signal of element silicon, we find it has two peak value in the 103ev and 99ev;In the result of AFM, we find the surface becoming roughened by the ion bombardment at high temperature. It is changed by the concentration of the oxygen and the intensity of the ion beam.
1. 羅文雄,半導體製造技術,滄海出版社,民92。
2. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, p.3770 (1965).
3. E. Scheid, et al., Jap. J. Appl. Phys. Vol. 29, p.L2105 (1990).
4. S. S. Todorov and E. R. Fossum, Appl. Phys. Lett. 52, p.48 (1987).
5. G. Holmen and Harald Jacobsson, Appl. Phys. Lett. 53, p.1838 (1988).
6. 陳寶清,真空表面處理工學,傳勝出版社,民81。
7. R.Behrisch, Sputtering by Particle Bombardment III, Ch1 (1981).
8. J.Wayne Rabalais , Low Energy Ion-Surface Interactions, Ch8 (1994).
9. G. Gerardi, E.H. Poindexter, P.J. Caplan, N.M. Johnson, Appl. Phys. Lett. 49(6), p.348 (1986).
10. C.M. Garner, I. Lindau, C.Y. Su, P. Pianetta, and W.E. Spicer, Phys. Rev. B19(8), p.3944 (1979).
11. Y. Yakakuwa, M. Nihei, T. Horie and n. Miyamoto, J. Non-Crys. Sol. 179, p.345-353 (1994).
12. V. Murali and S.P. Murarka, J. Appl. Phys. 60, p.2106 (1986).
13. 潘扶民,材料分析,Ch 13,中國材料學會(1998)。
14. NT-MDT Solver P47 Instruction Manual(NT-MDT Co., Moscow, Russia, 2002).
15. 呂登復,實用真空技術,國興出版社,民89。
16. 蘇森青,真空技術,東華書局,民85。
17. N. F. Ramsey, Molecular beams, Ch2 (1965).
18. F. Moulder, F. Strickle, E. Sobol and D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (1995).
19. F. J. Himpsel and F. R. McFeely, Phys. Rev. B 38, p6084 (1988).
20. 余錦順,離子束製作氧化層之化學成分與表面型態分析,碩士論文,民95。