| 研究生: |
盧立瑋 Li-Wei Lu |
|---|---|
| 論文名稱: |
相位移動器校正之研究 Calibration of the phase-shifting adapter |
| 指導教授: |
歐陽盟
Mang Ou-Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 相位移動器 、相位移校正 、壓電材料 |
| 外文關鍵詞: | phase-shifting adapter, phase-shifting calibration, piezoelectric ceramic |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相移精度於相移干涉術之量測,是最可代表樣品資料之可靠度。對利用相移干涉術來量測樣品之干涉儀而言,不準確之相移會在計算物體相位上產生誤差。本系統之相位移動器係由三個壓電致動器所構成,因為壓電致動器本身之差異與結構上受到不同應力之影響,在移動的過程中會產生移動不均的問題,意即在推進過程中改變參考面之法線向量,最直接的觀察方式為推動一週期後比較前後之干涉圖,干涉條紋有旋轉與間隔改變之現象,此現象亦反應在相位移之標準差。
針對此問題之解決方式,本論文提出一種校正相位移動器的方式,從理論推導出壓電致動器位移與條紋斜率之關係,從此關係中找出一特殊情況來校正,此方式利用條紋之變化來對壓電致動器之差異進行個別調校,從比對第一張與最後一張影像之差異變化,可發現利用此方法所得到之權重比例,的確改善了移動不均之現象。
The error of the movements of the phase-shifting adapter(PSA) determines the accuracy of measurement to a large degree. For large-apeture and weighty optical elements, we usually use an adapter with three PZTs to hold the tested optical element. It is very important to keep the adapter stretched as a flat. Otherwise, the shifting fringe patterns will rotate, and the distance between fringes will be changed. These phenomena will decrease the precision of phase-shifting interferometry.
In this thesis, a method to calibrate a phase-shifting adapter with three piezoelectric ceramics based on the relationship between the displacement of PZT and the slope of interference fringe is proposed to increase the testing precision of phase-shifting interferometer. Observing the first and the last interferograms, the unequal movement of the PSA is improved by this method.
[1] K. Creath and A. Morales, “Contact and noncontact profilers,” Chap. 17 in Optical Shop Testing, D. Malacara, Ed., pp. 697-700, Wiley, New York (1992).
[2] J. Ojeda-Castaneda, “Foucault, wire, and phase modulation tests,” Chap. 8 in Optical Shop Testing, D. Malacara, Ed., pp. 265-299, Wiley, New York (1992).
[3] I. Ghozeil, “Hartmann and other screen tests,” Chap. 10 in Optical Shop Testing, D. Malacara, Ed., pp. 367-385, Wiley, New York (1992).
[4] D. K. Cheng, Field and wave electromagnetics, pp. 306-317, Addison-wesley, Reading, Massachusetts (1983).
[5] M. V. Klein and T. E. Furtak, “Interference,” Chap. 5 in Optics, pp. 263-272, Wiley, New York (1986).
[6] Gallagher, J. E. and D. R. Herriott, “Wavefront Measurement” U. S. Patent3,694,088 (1972/1972)
[7] Creath, K., “Phase-Measurement Interferometry Technique,” in Progress in Optics. Vol. XXVI, E. Wolf, Ed., Elsevier Science Publishers, Amsterdam, 349-393 (1988).
[8] J. C. Wyant, C. L. Koliopoulos, B. Bhushan and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans., 27, 101(1984).
[9] J. C. Wyant, “Interferometry optical metrology: basic principles and new systems,” Laser Focus, 65–71 (1982).
[10] Carré, P. “Installation et Utilisation du Comparateur Photoelectrique et Interferentiel du Bureau International des Poids de Mesures,” Metrologia 2, 13 (1966).
[11] P. Hariharan, B. F. Oreb, and T. Eiju, ‘’Digital Phase-Shifting Interferometry: a Simple Error-Compensating Phase Calculation Algorithm,” Appl. Opt. 13, 2504 (1987).
[12] 吳朗, ”電子陶瓷壓電,” 全欣資訊圖書股份有限公司, 1995.
[13] 池田拓郎, ”基本壓電材料學”, 復漢出版社, 1985.
[14] D. W. Robinson and G. T. Reid, Interferogram Analysis, 2nd Ed., pp. 123-126, Institute of Physics Publishing, Bristol and Philadelphia (1993).
[15] J. Schwider, R. Burow, K. E. Elssner et al., “Digital wave-front measuring interferometry: some systematic error. sources,” Appl. Opt. 22, 3421-3432 (1983).
[16] K.G. Larkin and B.F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9, 1740-1748 (1992).
[17] J. B. Hayes, “Linear methods of computer controlled optical figuring” PhD Dissertation Optical Sciences Center University of Arizona Tucson AZ (1984).
[18] C. Ai and J. C. Wyant, “Effect of piezoelectric transducer nonlinearity on phase shift interferometry,” Appl. Opt. 26, 1112–1116 (1987).
[19] M. Jiang, H. Y. Tam, X. Y. He, “Phase shifting calibrated with digital image correlation method,” Proc. SPIE 5852, 599-607 (2005).
[20] Yu Zhu, Jingbang Chen, Hui Liu, Rihong Zhu and Yuling Xiao, “Nonlinear calibrating for phase-shifting adapter with three pztz,” Microwave and Optical Technology Letters, vol. 23, no. 6, 413-414 (1999).
[21] Bernd Gutmann and Herbert Weber, “Phase-shifter calibration and error detection in phase-shifting application: a new method,” Appl. Opt. Vol. 37, 7624-7631 (1998).
[22] Xin Chen, Maureen Gramaglia, and John A. Yeazell, “Phase-shift calibration algorithm for phase-shifting interferometry,” J. Opt. Soc. Am. A, Vol.17, No.11, 2061-2066 (2002).
[23] Kieran G. Larkin, “A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns,” Opt. Express 9, 236-253 (2001).
[24] Kemao Qian, Seah Hock Soon and Anand Asundi, “Calibration of phase shift from two fringe patterns,” Measurement Science and Technology, 15, 2142-2144 (2004).
[25] Improving the linearity of piezoelectric ceramic actuators, Electron Lett, 442-444, (1982).
[26]陸懋宏,吳政芳,”利用雙波長相移干涉術量測三維表面輪廓”,國立交通大學光電工程研究所,民國八十八年。
[27]曾垂拱,葉格銘,“菲索干涉儀與壓電材料之晶圓表面量測”,國立台灣科技大學機械工程技術研究所碩士學位論文,民國九十二年。