| 研究生: |
楊騎福 Chi-fu YANG |
|---|---|
| 論文名稱: |
以微波對多孔矽做消除晶格缺陷之相關研究 |
| 指導教授: | 李天錫 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 多孔矽 、微波 |
| 外文關鍵詞: | microwave, porous silicon |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究目標為將P型矽晶材料以電化學蝕刻做出多孔矽薄膜層,製作出適用於太陽能電池抗反射層之材料。目前在太陽能電池製造中,基板種類可分為單晶矽、多晶矽以及非晶矽,其中更以單晶矽的轉換效率最佳,在實驗過程中嘗試以微波處理來消除孔隙缺陷使多孔矽表面形成一層緻密的單晶多孔矽層。因傳統爐管加熱溫度過高且所耗費時間較長,故本實驗施以微波照射使其表面產生晶體重整後,藉由儀器檢測比較不同微波時間造成的表面多孔結構的差異。蝕刻時的參數包含時間、濃度、電流、光照以及熱處理時的溫度、時間、環境氣氛皆為固定,而以微波照射時間參數不同製作出之多孔矽材料,先藉由SEM觀察其表面結構變化,再利用X光繞射分析去檢測不同微波時間下晶體結晶的方向,以利往後依需求不同而選取適合的時間參數。
Abstract
The goal of this research is by using electrochemical etching to produce ultra-thin porous silicon layer. The layer can be used in the anti-reflection layer in the solar cell system. In the solar cell industry, the substrate can be divided to three different parts, which are single-crystal silicon, poly-silicon, and amorphous-silicon. The efficiency of the single-crystal silicon is the highest one. Therefore, we tried to use microwave (MW) technology to eliminate the defects of the porous-silicon. In this way, we can obtain a compact single-crystal silicon layer on the surface.
The traditional way to recrystallization the layer should be process in high temperature above 1050 degree. Besides, it takes too much time and energy to do so. Therefore, in this experiment, we choose microwave to replace the traditional process, which can improve the quality of the layers and reduce the cost. After different periods of microwave process, we used SEM to observe the structure of the samples. Furthermore, X-ray diffraction results can show us the quality of the crystallization.
參考文獻
[1] Moore, Sally Falk. Law as process: an anthropological approach. LIT Verlag Münster, 2000.
[2] Celler, G. K., and Sorin Cristoloveanu. "Frontiers of silicon-on-insulator."Journal of Applied Physics 93.9 (2003): 4955-4978.
[3] 莊達人, and 電子工程. VLSI 製造技術. 高立出版, 2003.
[4] 電漿離子佈植製作 SOI 及佈植缺陷之研究. 2008.
[5] Kuo, James B., and Ker-Wei Su. CMOS VLSI engineering: silicon-on-insulator (SOI). Springer Science & Business Media, 2013.
[6] Colinge, J-P. Silicon-on-Insulator Technology: Materials to VLSI: Materials to Vlsi. Springer Science & Business Media, 2004.
[7] Lasky, J. B., et al. "Silicon-on-insulator (SOI) by bonding and etch-back."Electron Devices Meeting, 1985 International. Vol. 31. IEEE, 1985.
[8] Tong, Q-Y., and Ulrich Goesele. Semiconductor wafer bonding: science and technology. John Wiley, 1999.
[9] Bruel, Michel. "Process for the production of thin semiconductor material films." U.S. Patent No. 5,374,564. 20 Dec. 1994.
[10] Srikrishnan, Kris V. "Smart-cut process for the production of thin semiconductor material films." U.S. Patent No. 5,882,987. 16 Mar. 1999.
[11] Karmakar, Rana. "Quantum Dots and it method of preparations-revisited."PRAJNAN O SADHONA–A SCIENCE ANNUAL (2015): 116.
[12] Yonehara, Takao, and Kiyofumi Sakaguchi. "Eltran®, Novel SOI Wafer Technology." JSAP International 4 (2001): 10-16.
[13] Uhlir, A. "Electrolytic shaping of germanium and silicon." Bell System Technical Journal 35.2 (1956): 333-347.
[14] Osaka, Tetsuya, Kako Ogasawara, and Shohei Nakahara. "Classification of the Pore Structure of n‐Type Silicon and Its Microstructure." Journal of The Electrochemical Society 144.9 (1997): 3226-3237.
[15] Lehmann, V., and S. Ronnebeck. "The Physics of Macropore Formation in Low‐Doped p‐Type Silicon." Journal of The Electrochemical Society 146.8 (1999): 2968-2975.
[16] Beale, M. I. J., et al. "An experimental and theoretical study of the formation and microstructure of porous silicon." Journal of Crystal Growth 73.3 (1985): 622-636.
[17] Beale, M. I. J., et al. "Microstructure and formation mechanism of porous silicon." Applied Physics Letters 46.1 (1985): 86-88.
[18] Read, A. J., et al. "First-principles calculations of the electronic properties of silicon quantum wires." Physical review letters 69.8 (1992): 1232.
[19] Sanders, G. D., and Yia-Chung Chang. "Theory of optical properties of quantum wires in porous silicon." Physical Review B 45.16 (1992): 9202.
[20] Lehmann, V., and Ulrich Gösele. "Porous silicon formation: a quantum wire effect." Applied Physics Letters 58.8 (1991): 856-858.
[21] Smith, R. L., S-F. Chuang, and S. D. Collins. "A theoretical model of the formation morphologies of porous silicon." Journal of Electronic Materials 17.6 (1988): 533-541.
[22] Witten, Thomas A., and Leonard M. Sander. "Diffusion-limited aggregation."Physical Review B 27.9 (1983): 5686.
[23] Solanki, C. S., et al. "New approach for the formation and separation of a thin porous silicon layer." physica status solidi (a) 182.1 (2000): 97-101.
[24] Labunov, V., et al. "Heat treatment effect on porous silicon." Thin Solid Films137.1 (1986): 123-134.
[25] Müller, G., et al. "Sintering of porous silicon." physica status solidi (a) 197.1 (2003): 83-87.
[26] Reed-Hill, Robert E., and Reza Abbaschian. "Physical metallurgy principles." (1973).
[27] German, Randall M. "Sintering theory and practice." Sintering Theory and Practice, by Randall M. German, pp. 568. ISBN 0-471-05786-X. Wiley-VCH, January 1996. 1 (1996).
[28]
[29] Ott, N., et al. "Evolution of the microstructure during annealing of porous silicon multilayers." Journal of applied physics 95.2 (2004): 497-503.
[30] Welch, Arthur E. "Microwave heating apparatus and method of heating a food package." U.S. Patent No. 2,714,070. 26 Jul. 1955.
[31] Kingstone, H. M., and L. Jassie. "Introduction to microwave sample preparation." Theory and practice. American Chemical Socity Professional Reference Book, Washington DC 263 (1988).
[32] Mingos, D. Michael P., and David R. Baghurst. "Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry."Chem. Soc. Rev. 20.1 (1991): 1-47.
[33] Clark, David E., and Willard H. Sutton. "Microwave processing of materials."Annual Review of Materials Science 26.1 (1996): 299-331.
[34] 曾信富. "微波加熱處理與材料特性分析." 清華大學物理學系學位論文 (2006): 1-59.
[35] 微波加熱與微波萃取教學與實驗教材之設計. 2001.
[36] http://web.it.nctu.edu.tw/~FMPANLAB/LowK.htm
[37] 微波加熱與微波萃取教學與實驗教材之設計. 2001.
[38] Huang, Z., Q. Zhang, and R. W. Whatmore. "Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method." Journal of applied physics 85.10 (1999): 7355-7361.