| 研究生: |
杜福安 Fu-an Du |
|---|---|
| 論文名稱: |
利用二維光子晶體提升氮化鎵發光二極體發光效率之模擬與分析 Study of the light efficiency from GaN light-emitting diodes with two-dimensional photonic crystal |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 光萃取 、發光二極體 、光子晶體 |
| 外文關鍵詞: | lught extraction, light-emitting diodes, photonic crystal |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主要在探討如何利用二維光子晶體提升氮化鎵二極體發光效率。論文中描述提升發光效率機制有二個:一為利用表面週期性結構造成布拉格散射,以減少全內反射情形發生;第二個則是利用光子晶體能隙將傳導模態導引出來,以提升外部量子效率。除此之外,當製作光子晶體時對材料的破壞會造成實際發光面積減少與非輻射複合效應增加。將此兩項效應對總發光效率的影響作討論,以及分析利用共振腔結構提升自發性輻射機率對總發光效率之影響。從上述分析結果建立一套簡易模擬模型描述光子晶體發光二極體之發光效率性質。
Abstract
In this research, we study the light extraction characteristics in photonic crystal slab structures and report the enhancement results. There are two mechanisms for improved LED output power, the first is using the Bragg scattering to enhance the output efficiency by photonic crystal surface patterned and it can avoid the internal reflection probability to occur. The second mechanism is permitting the guided mode to the escape the LED slab by the photonic crystal band gap structure. Besides it, we consider the reduced emitting area and non-radiative recombination effect when photonic crystal structure inset the LED device. We also consider the resonant structure which induced the Purcell effect, and it can enhance the spontaneous emission rate. Finally, we set up a model that can describe the light characteristics in the photonic crystal LED structure.
參考文獻
[1] E.Yablonovitch et. al. ”Inhibited Spontaneous Emission in Solid-state
Physics and Electronics,” Phys. Rev. Lett. ,Vol. 58, pp. 2059 (1987)
[2] S. John et. al. “Strong localization of photons in certain disordered
dielectricsuper lattices,” Phys. Rev. Lett. ,Vol. 58, pp. 2486 (1987)
[3] M. Boroditsky et. al. “Light extraction from optically pumped light-
emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. ,Vol.
75, pp. 1036-1038 (1999)
[4] H. Y. Ryu and Y. H. Lee et. al. “Over 30-fold enhancement of light
extraction from free-standing photonic crystal slabs with InGaAs quantum
dots at low temperature,” Appl. Phys. Lett. ,Vol. 79, pp. 3573-3575
(2001)
[5] Alexei A. Erchak et. al. “Enhanced coupling to vertical radiation using
a two-dimensional photonic crystal in a semiconductor light-emitting
diode”Appl. Phys. Lett. ,Vol. 78, pp. 563-565 (2001)
[6] T. N. Oder et. al. “III-nitride photonic crystals” Appl. Phys.
Lett. ,Vol. 83, pp. 1231-1233 (2003)
[7] T. N. Oder et. al. “III-nitride blue and ultraviolet photonic crystal
light emitting diodes” Appl. Phys. Lett. ,Vol. 84, pp. 466-468 (2004)
[8] Hiroyuki Ichikawa and Toshihiko Baba et. al. “Efficiency enhancement in
a light-emitting diode with a two-dimensional surface grating photonic
crystal” Appl. Phys. Lett. ,Vol. 84, pp. 457-459 (2004)
[9] Kenji ORTIA et. al. “High-Extraction-Efficiency Blue Light-Emitting
Diode Using Extended-Pith Photonic Crystal” Jpn. J. Phys. Lett. Vol.
43, pp.5809-5813 (2004)
[10] Chi-O CHO et. al. “Photonic Crystal Slab Waveguides Fabricated by
Combination of Holography and Photolithography” Jpn. J. Phys.
Lett. ,Vol. 43, pp.1384-1387 (2004)
[11] Patkar et. al. “Characterization of photon recycling in thin
crystalline light emitting-diodes” J. Appl. Phys. ,Vol. 78(4), pp.2817-
2822
[12] S. Guo and S. Albin et. al. “Simple plane wave implementation for
photonic crystal calculations ” Opt. Express Vol. 11, pp. 167-175
(2003)
[13] Dennis M. Sullivan et.al. ” Electromagnetic Simulation Using The FDTD
Method ” IEEE. press, New York, 2001
[14] Kane S.Yee et. al. “Numerical Solution of Initial Boundary Value
Problems Involving Maxwell’s Equations in Isotropic Media” , IEEE.
Trans. Antennas. Propag. ,Vol.14, pp. 302-307 (1966)
[15] Loncar, T. Doll J. Vuckovic, and A. Scherer et. al. “Design and
Fabrication of Silicon Photonic Crystal Optical Waveguides”
J.Lightwave Tech. 18, pp. 1402-1411 (2000).
[16] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D.
Dapkus, I. Kim ” Two-Dimensional Photonic Band-Gap Defect Mode
Laser ”SCIENCE, Vol. 284, pp.1819 (1999)
[17] “Room-temperature triangular-lattice two-dimensional photonic band gap
lasers operating at 1.54 µm” Appl. Phys. Lett. Vol. 76, p.2982 (2000)
[18] M. Boroditsky et. al. “ Spontaneous Emission Extraction and Purcell
Enhancement from Thin-film 2-D Photonic Crystal” IEEE LIGHTWAVE
TECHNOLOGY, Vol. 17, pp. 2096 (1999)
[19] Masayuki Fujita et. al. “Simultaneous Inhibition and Redistribution of
Spontaneous Light Emission in Photonic Crystals,”
SCIENCE, Vol. 308 ,pp.1296 (2005)
[20] Alongkarn ACHUTINAN and Susumu NODA “Analysis of Waveguides and
Waveguide Bends in Photonic Crystal Slabs with Triangular Lattices ”
Jpn. J. Appl. Phys. ,Vol. 39, pp. L595-L596 (2000)
[21] Shanhui Fan et,al, “High Extraction Efficiency of Spontaneous Emission
from Slabs of Photonic Crystals” Phys. Rev. Lett. Vol.78, pp. 3294
(1997)
[22] Y. P. Hsu, S. J. Chang et. al. “InGaN/GaN Light-Emitting Diodes with a
Reflector at the Backside of Sapphire Substrates,” Journal of
ELECTRONIC
MATERIALS, Vol. 32, No. 5, (2003)
[23] Dong-Ho Kim et. al. “Improve light extraction efficiency in III-nitride
photonic crystal light–emitting diodes” Proc. of SPIE ,Vol. 5941
59410 M-1
[24] M. Boroditsky “Surface recombination measurements on III–V candidate
materials for nanostructure light-emitting diodes” J. Appl.
Phys. ,Vol. 87 pp.
3497 (2000)
[25] E. M. Purcell et. al. “Spontaneous emission probabilities at radio
frequencies ” Phys. Rev. Lett. ,Vol. 69, pp. 681 (1946)
[26] J. Gerard et. al. “Enhance spontaneous emission by quantum boxes in a
monolithic optical mocrocavity” Phys. Rev. Lett. ,Vol.91, pp. 1110-
1113 (1998)
[27] H. Y. Ryu et. al. “Enhancement of spontaneous emission from the
resonant modes of a photonic crystal slab single-defect cavity” Optics
Letters ,Vol. 28, pp. 2390 (2003)
[28] Y. Akahane et. al. “Tuning holes in photonic crystal nanocavities”
Nature ,Vol. 425, pp. 944-947 (2003)
[29] J. Opt. Soc. Am. B , Vol. 16, No. 2 ,pp. 275 (1999)
[30] Classical Electrodynamics , J. D. Jackson