跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林詩翰
LIN-SHIH-HAN
論文名稱: 數值模擬加熱系統對柴氏法生長氧化鎵晶體固液介面 的影響
Numerical simulation for the effect of heating system towards crystal-melt interface of β-Ga2O3 crystal during Czochralski Growth Process
指導教授: 陳志臣
Chen, Jyh-Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 103
中文關鍵詞: 氧化鎵單晶柴式法數值模擬晶體-熔湯間固液介面
外文關鍵詞: β-Ga2O3, CZ, numerical simulation, crystal-melt interface
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鎵(Ga2O3)是新型的氧化物半導體,氧化鎵寬能隙的材料性
    質,具備開發為高效率電子元件的潛能,再加上 β-Ga2O3可經由液相長
    晶法進行生長,與氣相長晶法相比,能夠大幅的提升長晶的速率以及晶
    體的品質。由於長晶過程中,晶體與熔湯間固液介面的形狀與位置影響
    著晶體成形的穩定度,而腔體的溫場與熔湯的流場則進一步影響著介面
    的位置與能量的平衡,因此在長晶的過程中溫場與流場的控制相當重要。
    本研究以數值方法進行模擬柴氏法 Czochralski(Cz)生長氧化鎵晶
    體過程中晶體-熔湯之固液介面形狀與位置,透過改變感應加熱線圈的
    間距、位置以及功率大小來模擬並分析熱場、流場,最後依據晶體-熔湯
    間固液介面上的熱通量差值進行介面幾何位置的調整直至收斂。
    從研究中發現腔體的溫場與流場會影響介面的能量平衡,在固定拉
    速的條件下,感應加熱線圈的功率、位置會影響介面的凹凸程度,根據
    文獻回顧,凸向熔湯的介面較容易生長出完整的晶棒,本研究結果中可
    以得知,熔湯的流場型態由浮力渦流所主導,等溫線受對流影響而變形,
    為了達成介面的能量平衡,隨著輸入功率提高,固液介面形狀朝向晶體
    方向變化,並且功率過高,介面形狀會由低功率的凸向熔湯變成凹向熔
    湯;提高線圈位置會造成固液介面軸向變化增加,並且線圈位置越高固
    液介面於熔湯中凸率增加;加大線圈間距使得熔湯溫度下降,固液介面
    於熔湯中凸率增加,並且線圈間距過大時,會造成熔湯溫度低於熔點溫
    度。


    Gallium oxide (Ga2O3) is a new material of oxide semiconductor . For
    the wide Band-gap material property , Gallium oxide has the potential to
    develop as efficient electro components. Compare with growing from the gas
    phase, β-Ga2O3 crystals could be grown from liquid phase and also have
    higher growth rate as well as better quality. The temperature field of the cavity
    and the melt flow affect the crystal-melt interface shape and energy balance .
    And also the crystal-melt interface shape will affect the stability of crystal
    formation during crystal growth . Therefore the control of the crystal growth
    temperature field and melt convection is very important .
    This study analyzes the crystal-melt interface shape and position when
    the Ga2O3 crystal grows in Czochralski method through numerical
    simulation . In the simulation , we change coils spacing and position of
    induction heating coil and also the input power to see the difference in the
    result . Last, according to the heat flux difference , on the crystal-melt
    interface , to adjust the interface geometric position till convergence .
    The results show that the temperature field and flow field in the crystal
    growth furnace will affect the energy balance on the crystal-melt interface .
    Under the condition of fixed crystal pulling speed , the spacing and position
    of heating coils will cause different degrees of unevenness of the interface .
    Based on reference reviews , the interface convex to the melt is easier to grow
    complete crystals . Known from the simulation result , the flow field pattern
    in the melt is dominated by buoyant force, and the isotherm line is deformed
    by convection. In order to reach the energy balance on the crystal-melt
    interface, when the input power increases, the shape of the interface will
    change towards the crystal direction.
    IV
    In addition, when the power is too high, the interface shape will change
    from convex to concave . The second result is that the higher the coil position,
    the higher the convexity of the interface in the melt . Furthermore, increasing
    the position of the coil will increase the axial variation of the crystal-melt
    interface. Third result is the expansion of coil spacing , which will lower the
    temperature of the melt and cause the interface to increase the convexity in
    the melt . When the coil spacing is too large, the melt temperature will be
    lower than the melting point temperature.

    摘要 I 誌謝 V 目錄 VII 圖目錄 X 表目錄 XV 第壹章 緒論 1 1.1 研究背景 1 1.2 晶體-熔湯介面形狀對長晶的影響 2 1.3 文獻回顧 3 1.3.1氧化鎵的材料性質 3 1.3.2 二氧化碳對於氧化鎵的重要性 4 1.3.3 長晶模型 6 1-4 研究動機與目的 6 第貳章 研究方法 14 2.1模型幾何 14 2.2物理系統 15 2.3基本假設 17 2-3數學模型與邊界條件 18 2-3-1統御方程式 18 2-3-2邊界方程式 20 2-4無因次參數式 23 第參章 數值方法 30 3.1 數值分析求解 30 3.2 網格配置 31 3-2-1晶體與熔湯統一網格大小 31 3-2-2晶體-熔湯固液介面網格加密 32 第肆章 結果與討論 36 4.1柴式法生長2吋氧化鎵晶體之熱流場分析 36 4.1-1 磁場強度與熱源位置之關係 38 4.1-2熱源位置與溫場之關係 38 4.1-3 考慮熔湯自然對流 39 4.2熱通量不連續現象 40 4.3不同線圈功率比較 40 4.3-1 磁場強度與熱源位置之關係 41 4.3-2晶體與熔湯內溫場與流場 41 4.3-3不同功率之固液介面形狀比較 42 4.3-4不同線圈功率比較小結 43 4.4熔湯溫場與固液介面之關係 43 4.5不同線圈位置 44 4.5-1 磁場強度與熱源位置之關係 44 4.5-2晶體與熔湯內溫場與流場 45 4.5-3不同位置之固液介面形狀比較 45 4.5-4不同線圈位置比較小結 46 4.6不同線圈間距 46 4.6-1 磁場強度與熱源位置之關係 46 4.6-2晶體與熔湯內溫場與流場 47 4.6-3不同間距之固液介面形狀比較 47 4.6-4不同線圈間距比較小結 48 第伍章 結論與未來研究方向 77 5.1 結論 77 5.2 未來研究方向 78 參考文獻 81

    [1] M. A. Mastro, A. Kuratama, J. Calkins, J. Kim, F. Ren, S. J. Pearton, Opportunities and Future Directions for Ga2O3, ECS Journal of Solid State Science and Technology, Vol. 6, pp. 356 - 359, 2017.
    [2] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Applied Physics Letters, Vol. 100, 2012
    [3] D. Schwabe, R. Uecker, M. Bernhagen, Z. Galazka, An analysis of and a model for spiral growth of Czochralski-grown oxide crystals with high melting point, Journal of Crystal Growth, Vol. 335, pp. 138 – 147, 2011.
    [4] M. Baldini, Z. Galazkz, G. Wagner, Recent progress in the growth of β-Ga2O3 for power electronics applications, Materials Science in Semiconductor Processing, Vol. 78, pp. 132 – 146, 2018.
    [5] Z. Galazka, β-Ga2 O3 for wide-bandgap electronics and optoelectronics , Semicond. Sci. Technol. 33 113001 , 2018 .
    [6] Z. Galazka,z Reinhard Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method, ECS Journal of Solid State Science and Technology, Q3007-Q3011 (2017)
    [7] Z. Galazka, R. Uecker, K, Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, Czochralski growth and characterization of β-Ga2O3 single crystals, Crystal Research and Technology, Vol. 45, pp. 1299 – 1236, 2010.
    [8] W. Miller, K. Bottcher, Z. Galazka, J. Schreuer, Numerical Modelling of the Czochralski Growth of β-Ga2O3, Crystals, pp. 26-40, 2017.
    [9] C.-W. Lu and J.-C. Chen, Numerical computation of sapphire crystal growth using heat exchanger method, Journal of Crystal Growth, Vol. 225, pp. 274-281, 2001.
    [10] C.-W. Lu, J.-C. Chen, L.-J. Hu, A numerical investigation of the thermal distribution effects in a heat-exchanger-method crystal growth system, Modelling and Simulation in Materials Science and Engineering, Vol. 10, pp. 147-162, 2002.
    [11] J.-C. Chen and C.-W. Lu, Influence of the crucible geometry on the shape of the melt-crystal interface during growth of sapphire crystal using a heat-exchanger-method, Journal of Crystal Growth, Vol. 266, pp. 239-245, 2004.
    [12] C.-W. Lu and J.-C. Chen, Influence of thermal conductivity on interface shape during growth of sapphire crystal using a heat-exchanger-method, Journal of Rare Earths, Vol. 24, pp. 222-227, 2006.
    [13] Z. Galazka, Growth Measures to Achieve Bulk Single Crystals of Transparent Semiconducting and Conducting Oxides Chap.6, Handbook of Crystal Growth 2nd edition, pp. 209-218, 2015.
    [14] Z. Cheng , M. Hanke , Z. Galazka , A. Trampert , Thermal expansion of single-crystalline β-Ga2O3 from RT to 1200 K studied by synchrotron-based high resolution x-ray diffraction , APPLIED PHYSICS LETTERS 113, 182102 (2018)
    [15] O.N. Budenkovaa,*.V.M. Mamedova. M.G. Vasilieva. V.S. Yufereva. Yu.N. Makarovb , Effect of internal radiation on the crystal–melt interface shape in Czochralski oxide growth , Journal of Crystal Growth(2004)

    QR CODE
    :::