| 研究生: |
林聖儒 Sheng-Ru Lin |
|---|---|
| 論文名稱: |
空間相關中上衰落通道環境下之最佳化接收機研究 Research on Optimal Receiver over Spatially Correlated Fading Channels |
| 指導教授: |
林嘉慶
Jia-Chin Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | Nakagami-m衰落通道 、最大比率結合 、主成分分析 、主成分選擇組合的方法 |
| 外文關鍵詞: | Nakagami-m Fading Channel, Maximal-Ratio Combining, Principal Component Analysis, Principal Component Selection Combining |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文提出一個創新的最佳接收機,此接收機能夠在空間相關性的Nakagami-m 衰落通道下以最大比率結合 (Maximal-Ratio Combining , MRC)接收時,其時間平均的訊雜比(Signal-to-Interference-plus-Noise Ratio , SINR)會有所增加,透過帶有對共變異數矩陣進行特徵值分解的主成分分析(Principal Component Analysis , PCA),可以得到一組完整的標準正交基底,之後對其進行去相關過程並分析,然後將接收到的訊號投影到基底函數所跨越的空間中,根據不相關理論(Theorem of Irrelevance),我們提出一個名為主成分選擇組合的方法(Principal Component Selection Combining , PCSC),此方法可以在少數維度中移除訊雜比較低的分量,並在隨後的最大比率結合接收提高時間平均的訊雜比,此方法還可以在雜訊與不同分支具有相關性時,可以避免雜訊增強。為了印證此篇論文中所提出的最佳接收器其性能,我們對其訊雜比的分佈,振幅穿越速率(Level-Crossing Rate ,LCR)和平均衰落持續時間(Average Fade Duration ,AFD)進行模擬,而我們所模擬的模型是基於創新的散射模型,根據分析評估出來的協方差矩陣,開發出以空間相關的Nakagami-m衰落通道所組成的模擬環境,並透過電腦模擬可以看出此篇論文所提出的最佳接收器器不僅減少了不相關子空間的干擾和雜訊,還實現在時間平均下更高的SINR和更低的AFD,而且還大大降低了後續訊號處理所需的複雜度。
This paper proposes a novel optimum combiner that raises the time-averaged signal-to-interference-plus-noise ratio (SINR) for maximal-ratio combining (MRC) reception over spatially correlated Nakagami-m fading channels. By exploiting the principal component analysis (PCA) with eigenvalue decomposition (EVD) of the covariance matrix analytically evaluated offline, a complete set of orthonormal basis functions can be obtained. A decorrelation process analyzes and then projects the received signal into the space spanned by the basis functions. In accordance with the theorem of irrelevance, a principal component selection combining (PCSC) method is proposed to remove components in a few dimensions in which SINRs are considered low to raise the resulting time-averaged SINR on the subsequent MRC reception. The proposed technique also avoids noise enhancement occurring with MRC reception in the scenario where noises on different branches are correlated. The SINR distribution, level-crossing rate (LCR) and average fade duration (AFD) are derived. Based on a novel scattering model interpretation, a simulator consisting of spatially correlated Nakagami-m fading channels is developed according to the analytically evaluated covariance matrix. Computer simulations show that the proposed optimum combiner not only reduces interference and noise from the irrelevant subspace to achieve higher time-averaged SINR and lower AFD, but also significantly reduces the complexity required for subsequent signal processing.
[1] D. G. Brennan, “Linear diversity combining techniques,” Proc. IRE, pp. vol. 47, pp. 1075–1102, June 1959.
[2] V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-m fading environment,” IEEE Trans. Commun, pp. vol. 43, pp. 2360–2367, Aug 1995.
[3] B. Zhu, F. Yang, J. Cheng, and L. Wu, “Performance bounds for diversity receptions over arbitrarily correlated Nakagami-m fading channels,” IEEE Trans. Wireless Commun, p. pp. 699–713, Jan 2016.
[4] Physical Channels and Modulation (Release 8), "Technical Specification Group Radio Access Network; Evolved University Terrestrial Radio Access (E-UTRA)," 3GPP Std. TS 36.211 V8.3.0, 2005.
[5] C. D. Iskander and P. T. Mathiopoulos, “Analytical level crossing ratesand average fade durations for diversity techniques in Nakagami fading channels,” IEEE Trans. Commun, pp. vol. 50, pp. 1301–1309, Aug 2002.
[6] C. Polprasert and J. A. Ritcey, “A Nakagami fading phase difference distribution and its impact on BER performance,” IEEE Trans. Wireless Commun, pp. vol. 7, pp. 2805–2813, July 2008.
[7] R. H. Clarke, “A statistical theory of mobile radio reception,” Bell System Tech. J, p. pp. 957–1000, July/August 1968.
[8] D. B. da Costa, M. D. Yacoub, J. C. S. S. Filho, and G. Fraidenraich, “General exact level crossing rate and average fade duration for dualdiversity combining of nonidentical correlated Weibull signals,” IEEE Trans. Veh. Technol, pp. vol. 56, pp. 3571–3577, Nov 2007.
[9] D. Li and V. K. Prabhu, “Average level crossing rates and average fade durations for maximal-ratio combining in correlated Nakagami channels,” in Proc. IEEE Wirel. Commun. and Network. Conf., p. pp. 339–344, March 2004.
[10] D. Luengo and L. Martino, “Almost rejectionless sampling from Nakagami-m distributions (m ≥ 1),” IET Electron. Lett, pp. vol. 48, pp.1559–1561, Nov 2012.
[11] L. Devroye, “Non-Uniform Random Variate Generation,” New York:Springer-Verlog, 1986.
[12] F. Adachi, M. T. Feeney, and J. D. Parsons, “Effects of correlated fading on level crossing rates and average fade durations with predetection diversity reception,” IEE Proceedings, pp. vol. 135, pp. 11–17, Feb 1988.
[13] G. Fraidenraich, M. D. Yacoub, J. R. Mendes, and J. C. S. S. Filho, “Second-order statistics for diversity-combining of non-identical correlated Hoyt signals,” IEEE Trans. Commun, pp. vol. 56, pp. 183–188, Feb 2008.
[14] J. C. S. S. Filho and M. D. Yacoub, “On the simulation and correlation properties of phase-envelope Nakagami fading processes,” IEEE Trans.Commun., pp. vol. 57, pp. 906–909, Apr 2009.
[15] J. C. S. S. Filho, G. Fraidenraich, and M. D. Yacoub, “Exact crossing rates of dual diversity over unbalanced correlated Rayleigh channels,” IEEE Commun. Lett, pp. vol. 10, pp. 37–39, Jan 2006.
[16] K. Zhang, Z. Song, and Y. L. Guan, “Cholesky decomposition model for correlated MRC diversity systems in Nakagami fading channels,” in Proc. IEEE Vehic. Technol. Conf., pp. pp. 1515-1519, 2002.
[17] P. Loskot and N. Beaulieu, “Decorrelation and orthogonalization of correlated diversity branches for HS/MRC diversity,” in Proc. IEEE Vehic. Technol. Conf. 2008, (VTC 2008-Spring), p. pp. 335–339, 2008.
[18] M. S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Veh. Technol, pp. vol. 50, pp. 1471–1480, Nov 2001.
[19] J. C. S. S. Filho, B. V. Teixeira, M. D. Yacoub, and G. T. F. de Abreu, “The RM2 Nakagami fading channel simulator,” IEEE Trans. Wireless Commun., pp. vol. 12, pp. 2323–2333, May 2013.
[20] X. Dong and N. C. Beaulieu, “Average level crossing rate and average fade duration of low-order maximal ratio diversity with unbalanced channels,” IEEE Commun. Lett., pp. vol. 6, pp. 135–137, Apr 2002.
[21] ——, “Average level crossing rate and average fade duration of selection diversity,” IEEE Commun. Lett, pp. vol. 5, pp. 396–398, Oct 2001.
[22] M. D. Yacoub, “Nakagami-m phase-envelope joint distribution:An improved model,” n Proc. IEEE MTT-S Intern. Microw. Optoelec. Conf.(IMOC 2009), p. pp. 335–339, 2009.
[23] Q. T. Zhang, “Maximal-ratio combining over Nakagami fading channels with an arbitrary branch covariance matrix,” IEEE Trans. Veh. Technol, pp. vol. 48, pp. 1141–1150, July 1999.
[24] M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes, “On higher order,” IEEE Trans. Veh. Technol, pp. vol. 48, pp. 2360–2369, May 1999.
[25] M. D. Yacoub, C. R. C. M. da Silva, and J. E. V. Bautista, “Second-order statistics for diversity-combining techniques in Nakagami-fading,” IEEE Trans. Veh. Technol., pp. vol. 50, pp. 1464–1470, Nov 2001.
[26] Y. Ma and J. Jin, “Effect of channel estimation errors on M-QAM with MRC and EGC in Nakagami fading channels,” IEEE Trans. Veh.Technol., pp. vol. 56, pp. 1239–1249, May 2007.
[27] J.-C. Lin, “An approach to the second-order statistics of maximum-ratio combining-like reception over independent Nakagami channels,” IEEE Trans. Veh. Technol, pp. vol. 61, pp. 859–865, Feb 2012.
[28] X. Dong and N. C. Beaulieu, “Optimal maximal ratio combining with correlated diversity branches,” IEEE Commun. Lett, pp. vol. 6, pp. 22–24, Jan 2002.
[29] M. D. Yacoub, G. Fraidenraich, and J. C. S. S. Filho, “Nakagami-m phase-envelope joint distribution,” Electr. Lett, pp. vol. 41, pp. 259–261, May 2005.
[30] ——, “Nakagami-m phase-envelope joint distribution: A new model,” IEEE Trans. Veh. Technol, pp. vol. 59, pp. 1552–1557, Mar 2010.
[31] L. Cao and N. C. Beaulieu, “Simple efficient methods for generating independent and bivariate Nakagami-m fading envelope samples,” IEEE Trans. Veh. Technol, pp. vol. 56, pp. 1573–1579, Apr 2007.
[32] Q. M. Zhu, X. Y. Dang, D. Z. Xu, and X. M. Chen, “Highly efficient rejection method for generating Nakagami-m sequences,” IET Electron.Lett., pp. vol. 47, pp. 1100–1101, Sept 2011.
[33] L. Martino and D. Luengo, “Extremely efficient acceptance-rejection method for simulating uncorrelated Nakagami fading channels,” Communications in Statistics - Simulation and Computation, p. pp. 1559–1561, Feb 2018.
[34] K. Zhang, Z. Song, and Y. L. Guan, “Simulation of Nakagami fading channels with arbitrary cross-correlation and fading parameters,” IEEE Trans. Wireless Commun., pp. vol. 3, pp. 1463–1468, May 2004.
[35] N. C. Beaulieu and C. Cheng, “Efficient Nakagami-m fading channel simulation,” IEEE Trans. Veh. Technol., pp. vol. 54, pp. 413–424, 2005.
[36] M. S. Alouini, A. Scaglione, and G. B. Giannakis, “PCC: Principal components combining for dense correlated multipath fading environments,” in Proc. IEEE Vehic. Technol. Conf., 2000, (VTC 2000), p. pp. 2510–2517., 2000.
[37] L. Fan, R. Zhao, F.-K. Gong, N. Yang, and G. K. Karagiannidis, “Secure multiple amplify-and-forward relaying over correlated fading channels,” IEEE Trans. Commun, pp. vol. 65, pp. 2811–2820, July 2017.
[38] X. Lai, L. Fan, J. Li, N. Yang, and G. K. Karagiannidis, “Distributed secure switch-and-stay combining over correlated fading channels,” IEEE Trans. Inform. Forensics and Security, pp. vol. 14, pp. 2088–2101, Aug 2019.
[39] J. G. Proakis and M. Salehi, “ Digital Communications. 5th ed,” McGrawHill, 2008.
[40] S. Haykin, “Communication Systems. 4th ed,” John Wiley & Sons, Inc, 2001.
[41] J.-C. Lin, “Revisit on maximum ratio combining reception practically,” in Proc. Wireless Telecommunications Symposium, (WTS 2015), p. 15–17, Apr 2015.
[42] M. Nakagami, “ The m-distribution a general formula of intensity distribution of rapid fading. Statistical Methods in Radio Wave Propagation,” W. C. Hoffman, Ed. Elmsford, NY: Pergamon,, 1960.
[43] Q. T. Zhang, “A decomposition technique for efficient generation of correlated Nakagami fading channels,” IEEE J. Select. Areas Commun., pp. vol. 18, pp. 2385–2392, Nov 2000.
[44] S. M. Kay, “Fundamentals of Statistical Signal Processing,” Estimation Theory. Prentice Hall, 1993.
[45] J.-C. Lin and H. V. Poor, “A systematic approach to deriving the covariance matrix of correlated Nakagami-m fading channels,” IEEE Trans. Veh. Technol, pp. vol. 69, pp. 1612–1625, Feb 2020.
[46] C. W. Therrien, “Discrete Random Signals and Statistical Signal Processing,” Prentice-Hall, Inc., pp. vol. 35, pp. 227–283, 1964, 1992.
[47] W. C. Jakes, “Microwave Mobile Communications. New York: Wiley”.