| 研究生: |
周軒廉 Hsuan-Lien Chou |
|---|---|
| 論文名稱: |
載體效應與去合金法對於釕觸媒應用於鹼性析氫反應之研究 Support Effect and Electrochemical Dealloying of Ru Catalysts for Alkaline Hydrogen Evolution Reaction |
| 指導教授: |
王冠文
Kuan-Wen Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 類沸石咪唑骨架 、釕 、析氫反應 、鹼性電解液 、去合金 、穩定度 |
| 外文關鍵詞: | Zeolitic imidazolate framework (ZIF), Ruthenium (Ru), hydrogen evolution reaction (HER), alkaline electrolyte, dealloying, stability |
| 相關次數: | 點閱:27 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
析氫反應(hydrogen evolution reaction, HER)是電解水中不可或缺的半反應,然而其低的轉換效率和緩慢的動力學限制了實際應用,因此開發合適的觸媒以降低 HER的過電位勢在必行。白金(Pt)基觸媒為最常見的HER材料並有著很好的活性,然而其效能在鹼性電解液中相較於酸性電解液差,為了開發具高效能、長時間穩定度與具成本效益的非 Pt 觸媒,具有和Pt相似之氫鍵強度且價格相對較低的釕 (Ru),可被視作 HER 的次佳選擇,特別在非酸性環境中的應用。另一方面,碳基材因其良好的導電性和實惠的價格而被廣泛地作為觸媒的載體,而與傳統的碳黑相比,具有更高的比表面積和更高的導電性之新興碳載體如類沸石咪唑骨架結構(zeolitic Imidazolate Framework, ZIF)也是一種具未來性的載體材料。
本研究的第一部分透過濕式化學法成功將近乎相同量的 Ru負載於不同的載體,包括 ZIF、多孔碳(PC)、活性碳(AC)和石墨烯(Gr)作為 HER 之觸媒。形貌、相、結晶度、化學組態、局部電子結構和電化學結果顯示Ru/ZIF在所製備的樣品中具有較低的過電位和較大的電化學活性面積,其載體中部分未完全氣化的鋅可作為犧牲劑以防Ru氧化,進而提高 HER的活性。
在第二部分中為得到更好的效能,對ZIF上之Ru負載量進行優化,顯示有效的表面Ru顯著地降低過電位和塔弗(Tafel)斜率。 隨後在酸性電解質中進行去合金法並調整時間,其不僅可修飾表面也提高了觸媒的HER活性。根據穿透式電子顯微鏡(TEM)之結果顯示此易於調控之後處理可成功地改變Ru於載體上的分散性,進而降低過電位。此外在經由穩定度測試後,經去合金後的樣品其粒徑仍不變,而過電位略微衰減,均表明其在鹼性電解液中仍能保持穩定性。本研究結果顯示將Ru嵌入適合的載體並經由簡單的後處理法是具潛力且能在HER中取代 Pt的材料。
The hydrogen evolution reaction (HER) is an essential half-reaction of electrochemical water splitting while its low conversion efficiencies and sluggish kinetics restrict the practical applications. The development of suitable electrocatalysts employed to lower the overpotential of HER is imperative. Pt-based catalysts are the most common materials and show great HER activity. However, in alkaline medium, its performance is relatively low compared to that in acid. In order to develop Pt-free catalysts with high efficiency, long-term stability, and cost-effectiveness, ruthenium (Ru) with similar hydrogen bonding strength with Pt and relatively low price can be regarded as the second best option for HER, especially in non-acidic environments. On the other hand, carbon matrices have been widely used as the supporter for electrocatalysts due to their great conductivity and affordable price. In contrast to the conventional carbon black, novel carbon support such as zeolitic imidazolate framework (ZIF) with higher specific surface area and greater conductivity is also a promising host material.
In the first part of this study, different host materials with nearly the same Ru loading, including ZIF, porous carbon (PC), activated carbon (AC) and graphene (Gr), have been successfully synthesized via wet chemical method and applied as HER catalysts. The morphologies, phases, crystallinity, chemical states, local structures and electrochemical results show that Ru/ZIF possesses relatively low overpotential and larger electrochemical surface area among the as-prepared samples. The incomplete gasification of zinc from the host material might partially serve as the sacrificial agent in Ru/ZIF and prevent Ru from oxidation, which can boost the HER activity.
Secondly, in order to obtain better performance, the Ru loading on ZIF has been optimized, suggesting that efficient surface Ru apparently lowers the overpotential and Tafel slope. The dealloying step is then conducted in acidic electrolyte with different durations, which not only modifies the surface but also improves the HER activity of the catalysts. Based on the TEM results, it is believed that this easy-to-control post-treatment can successfully change the dispersion of Ru on the support to decrease overpotential for HER. Furthermore, after the stability test, the slight decay of overpotential indicates that the dealloyed samples with unchanged particle size can remain durability in alkaline media. Our results demonstrate that the post-treated Ru embedded on suitable host material is a promising Pt substitute for HER.
1. Dincer, I.; Bicer, Y., Integration of conventional energy systems for multigeneration. Int. J. Energy Res. 2020, 143-221.
2. Le, T.-H.; Chang, Y.; Park, D., Renewable and nonrenewable energy consumption, economic growth, and emissions: International evidence. Energy J. 2020, 41 (2), 73-92.
3. Nikolaidis, P.; Poullikkas, A., A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597-611.
4. Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W., Water splitting: from electrode to green energy system. Nanomicro Lett 2020, 12 (1), 1-29.
5. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2019, 120 (2), 851-918.
6. Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S.-Z., Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 2016, 1 (10), 1-9.
7. Khan, M. A.; Zhao, H.; Zou, W.; Chen, Z.; Cao, W.; Fang, J.; Xu, J.; Zhang, L.; Zhang, J., Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 2018, 1 (4), 483-530.
8. Dubouis, N.; Grimaud, A., The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 2019, 10 (40), 9165-9181.
9. Wang, H.; Fu, W.; Yang, X.; Huang, Z.; Li, J.; Zhang, H.; Wang, Y., Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. J. Mater. Chem. A 2020, 8 (15), 6926-6956.
10. Wei, J.; Zhou, M.; Long, A.; Xue, Y.; Liao, H.; Wei, C.; Xu, Z. J., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Lett 2018, 10 (4), 1-15.
11. Mahmood, J.; Li, F.; Jung, S.-M.; Okyay, M. S.; Ahmad, I.; Kim, S.-J.; Park, N.; Jeong, H. Y.; Baek, J.-B., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12 (5), 441-446.
12. Wang, J.; Wei, Z.; Mao, S.; Li, H.; Wang, Y., Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11 (4), 800-806.
13. Pu, Z.; Amiinu, I. S.; Kou, Z.; Li, W.; Mu, S., RuP2‐based catalysts with platinum‐like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 2017, 56 (38), 11559-11564.
14. Toulhoat, H.; Raybaud, P., Prediction of optimal catalysts for a given chemical reaction. Catal. Sci. Technol. 2020, 10 (7), 2069-2081.
15. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B 2009, 88 (1-2), 1-24.
16. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F., Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44 (19), 6804-6849.
17. Jiang, H.; Liu, X. C.; Wu, Y.; Shu, Y.; Gong, X.; Ke, F. S.; Deng, H., Metal–organic frameworks for high charge–discharge rates in lithium–sulfur batteries. Angew. Chem. 2018, 130 (15), 3980-3985.
18. Wang, C.; Liu, X.; Demir, N. K.; Chen, J. P.; Li, K., Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 2016, 45 (18), 5107-5134.
19. Gao, Y.; Han, Z.; Hong, S.; Wu, T.; Li, X.; Qiu, J.; Sun, Z., ZIF-67-Derived Cobalt/Nitrogen-Doped Carbon Composites for Efficient Electrocatalytic N2 Reduction. ACS Appl. Energy Mater. 2019, 2 (8), 6071-6077.
20. Lamme, W. S.; van der Heijden, O.; Krans, N. A.; Nöllen, E.; Mager, N.; Hermans, S.; Zečević, J.; de Jong, K. P., Origin and prevention of broad particle size distributions in carbon-supported palladium catalysts prepared by liquid-phase reduction. J. Catal. 2019, 375, 448-455.
21. Guo, Y.; Mei, S.; Yuan, K.; Wang, D.-J.; Liu, H.-C.; Yan, C.-H.; Zhang, Y.-W., Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect. ACS Catal. 2018, 8 (7), 6203-6215.
22. Qiu, T.; Liang, Z.; Guo, W.; Gao, S.; Qu, C.; Tabassum, H.; Zhang, H.; Zhu, B.; Zou, R.; Shao-Horn, Y., Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy 2019, 58, 1-10.
23. Zhuang, S.; Lei, L.; Nunna, B.; Lee, E. S., New nitrogen-doped graphene/MOF-modified catalyst for fuel cell systems. ECS Trans. 2016, 72 (8), 149.
24. Pan, Y.; Heryadi, D.; Zhou, F.; Zhao, L.; Lestari, G.; Su, H.; Lai, Z., Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 2011, 13 (23), 6937-6940.
25. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K., Evolution of nanoporosity in dealloying. Nature 2001, 410 (6827), 450-453.
26. Li, Z.; Li, B.; Qin, Z.; Lu, X., Fabrication of porous Ag by dealloying of Ag–Zn alloys in H2SO4 solution. J. Mater. Sci. 2010, 45 (23), 6494-6497.
27. Jana, R.; Bhim, A.; Bothra, P.; Pati, S. K.; Peter, S. C., Electrochemical dealloying of PdCu3 nanoparticles to achieve Pt-like activity for the hydrogen evolution reaction. ChemPubSoc 2016, 9, 2922-2927.
28. Rurainsky, C.; Manjón, A. G.; Hiege, F.; Chen, Y.-T.; Scheu, C.; Tschulik, K., Electrochemical dealloying as a tool to tune the porosity, composition and catalytic activity of nanomaterials. J. Mater. Chem. A 2020, 8 (37), 19405-19413.
29. Si, Y.; Samulski, E. T., Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20 (21), 6792-6797.
30. Yurderi, M.; Bulut, A.; Zahmakiran, M.; Gülcan, M.; Özkar, S., Ruthenium (0) nanoparticles stabilized by metal-organic framework (ZIF-8): Highly efficient catalyst for the dehydrogenation of dimethylamine-borane and transfer hydrogenation of unsaturated hydrocarbons using dimethylamine-borane as hydrogen source. Appl. Catal. B 2014, 160, 534-541.
31. Zhang, L.; Gonçalves, A. A.; Jaroniec, M., Identification of preferentially exposed crystal facets by X-ray diffraction. RSC Adv. 2020, 10 (10), 5585-5589.
32. Veerakumar, P.; Salamalai, K.; Thanasekaran, P.; Lin, K.-C., Simple preparation of porous carbon-supported ruthenium: propitious catalytic activity in the reduction of ferrocyanate (III) and a cationic dye. ACS omega 2018, 3 (10), 12609-12621.
33. Hu, T.; Chen, J.; Lu, X.; Chen, J.; Chen, Z.; Fu, J.; Chen, Y., Synthesis of Few-Layer Graphene Sheets from Waste Expanded Polystyrene by Dense Fe Cluster Catalysis. ACS omega 2020, 5 (8), 4075-4082.
34. Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9 (11), 1276-1290.
35. Dychalska, A.; Popielarski, P.; Franków, W.; Fabisiak, K.; Paprocki, K.; Szybowicz, M., Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater. Sci-Poland 2015, 33 (4), 799-805.
36. Bhattacharyya, S.; Pang, S. H.; Dutzer, M. R.; Lively, R. P.; Walton, K. S.; Sholl, D. S.; Nair, S., Interactions of SO2-containing acid gases with ZIF-8: structural changes and mechanistic investigations. J. Phys. Chem. A C 2016, 120 (48), 27221-27229.
37. Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D., Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139 (40), 14143-14149.
38. Jorio, A., Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology. Int. Sch. Res. Notices 2012.
39. Dresselhaus, M.; Jorio, A.; Souza Filho, A.; Saito, R., Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A 2010, 368 (1932), 5355-5377.
40. Fan, L.; Li, Q.; Wang, D.; Meng, T.; Yan, M.; Xing, Z.; Wang, E.; Yang, X., Electrospun Ru–RuO 2/MoO 3 carbon nanorods with multi-active components: a Pt-like catalyst for the hydrogen evolution reaction. Chem. Commun. 2020, 56 (5), 739-742.
41. Getty, K.; Delgado-Jaime, M. U.; Kennepohl, P., Assignment of pre-edge features in the Ru K-edge X-ray absorption spectra of organometallic ruthenium complexes. Inorganica Chim. Acta 2008, 361 (4), 1059-1065.
42. Xing, L.; Gao, H.; Hai, G.; Tao, Z.; Zhao, J.; Jia, D.; Chen, X.; Han, M.; Hong, S.; Zheng, L., Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. J. Mater. Chem. A 2020, 8 (6), 3203-3210.
43. Bhalothia, D.; Fan, Y.-J.; Huang, T.-H.; Lin, Z.-J.; Yang, Y.-T.; Wang, K.-W.; Chen, T.-Y., Local Structural Disorder Enhances the Oxygen Reduction Reaction Activity of Carbon-Supported Low Pt Loading CoPt Nanocatalysts. J. Phys. Chem. C 2019, 123 (31), 19013-19021.
44. Lu, B.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10 (1), 1-11.
45. Wang, T.; Yuan, H.; Zhou, J.; Jiang, B.; Gao, Y.; Wang, L.; Pang, T.; Wu, K., Graphite Carbon Nitride‐Assisted Ruthenium/Reduced Graphene Oxide as High‐Efficiency Electrocatalyst for Hydrogen Evolution Reaction under Alkaline Conditions. ChemElectroChem 2020, 7 (15), 3269-3273.
46. Barman, B. K.; Das, D.; Nanda, K. K., Facile synthesis of ultrafine Ru nanocrystal supported N-doped graphene as an exceptional hydrogen evolution electrocatalyst in both alkaline and acidic media. Sustain. Energy Fuels 2017, 1 (5), 1028-1033.
47. Wu, K.; Sun, K.; Liu, S.; Cheong, W.-C.; Chen, Z.; Zhang, C.; Pan, Y.; Cheng, Y.; Zhuang, Z.; Wei, X., Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 2021, 80, 105467.
48. Wu, W.; Wu, Y.; Zheng, D.; Wang, K.; Tang, Z., Ni@ Ru core-shell nanoparticles on flower-like carbon nanosheets for hydrogen evolution reaction at All-pH values, oxygen evolution reaction and overall water splitting in alkaline solution. Electrochim. Acta 2019, 320, 134568.
49. Meng, G.; Tian, H.; Peng, L.; Ma, Z.; Chen, Y.; Chen, C.; Chang, Z.; Cui, X.; Shi, J., Ru to W electron donation for boosted HER from acidic to alkaline on Ru/WNO sponges. Nano Energy 2021, 80, 105531.
50. Gao, H.; Zang, J.; Liu, X.; Wang, Y.; Tian, P.; Zhou, S.; Song, S.; Chen, P.; Li, W., Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst. Appl. Surf. Sci. 2019, 494, 101-110.
51. Que, X.; Lin, T.; Li, S.; Chen, X.; Hu, C.; Wang, Y.; Shi, M.; Peng, J.; Li, J.; Ma, J., Radiation synthesis of size-controllable ruthenium-based electrocatalysts for hydrogen evolution reaction. Appl. Surf. Sci. 2021, 541, 148345.
52. Tang, L.; Yu, J.; Zhang, Y.; Tang, Z.; Qin, Y., Boosting the hydrogen evolution reaction activity of Ru in alkaline and neutral media by accelerating water dissociation. RSC Adv. 2021, 11 (11), 6107-6113.
53. Zhao, Y.; Wang, X.; Cheng, G.; Luo, W., Phosphorus-Induced Activation of Ruthenium for Boosting Hydrogen Oxidation and Evolution Electrocatalysis. ACS Catalysis 2020, 10 (20), 11751-11757.
54. Zhang, Z.; Wang, T.; Yao, K.; Cong, L.; Yu, Z.; Qu, L.; Qian, M.; Huang, W., One-pot synthesis of ruthenium nanoparticles embedded nitrogen-doped carbon framework for electrocatalytic hydrogen evolution reaction. Inorg. Chem. Commun. 2020, 116, 107914.