跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭志平
Chih-Ping Cheng
論文名稱: 微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究
Microstructuring of Borosilicate Glass by Using Micro Electrochemical Discharge Machining
指導教授: 顏炳華
Biing-Hwa yan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 130
中文關鍵詞: 電化學放電加工硼矽玻璃三維微細加工補償式脈衝電壓
外文關鍵詞: Borosilicate Glass, 3D-microstructuring, Offset Pulse Voltage, ECDM, Electrochemical Discharge Machining
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硼矽玻璃(Borosilicate Glass、Pyrex glass),由於具陽極接合、透光性及耐腐蝕等特性,所以有被大量使用於微機電系統或其它先進製程中的趨勢。但由於玻璃本身所具有的硬脆特性,因此很難實現高精度、高效率、高可靠性的加工,特別是在微型元件的製造上。近年來電化學放電加工已被證實為極有潛力應用玻璃材料的微加工製程上,然而實際製程的運用上,其加工精度、加工效率及重現性控制才是ECDM製程實用化之關鍵門檻。然而與製程精度及加工效率有直接關係的是放電特性,其影響的主要關鍵因子為絕緣氣泡膜的幾何外形與尺寸、及其結構穩定性。因此本研究使用不同的加工參數探討其對於電於電化學放電特性的影響,並進一步從中尋求改善策略。
    在運用於微孔加工上,實驗中利用扁平電極來減少電極側壁放電所造成的錐孔現象;並且採用脈衝電壓來減少放電能量的熱影響區以減少過切。結果顯示結合扁平電極與脈衝電壓對於微孔精度的改善上有顯著的效果,微孔的錐度可縮減3度。另外在微型元件的加工上,結果顯示在使用脈衝電壓與提高電極轉速的狀況下,結合層狀加工的方法,可以獲得高精度與高深寬比之微結構,並藉此證實了電化學放電加工運用於三維微細加工的可行性。
    雖然使用脈衝電壓來調控單位時間內放電的能量,對於改進加工精度是有利的,但是卻很難獲得符合期待的加工效率。主要是因為在脈衝休止時間內並無電壓的供應,電解氣泡並非持續的產生,這將使得氣膜結構狀況變為更不可預期,使得後續所引發的放電現象變的不穩定,造成加工效率和重現性不佳。對此研究中嘗試著開發設計一新的脈衝供給型態,稱之為補償式脈衝電壓,此乃是在脈衝休止時間內仍提供一恆定且微量的電壓以確保電解氣泡持續的產生,藉此改善脈衝周期內氣膜結構的完整性以提昇放電能量釋放的穩定性。結果顯示利用補償式脈衝電壓可改善加工效率達50%,且不損及加工精度。


    Borosilicate glasses (Pyrex glass) are becoming very important in MEMSs and many modern industries due to their anodic bonding properties, transparency and corrosion resistance. However, the inert nature of glass possesses challenges for machining these materials with high accuracy and efficiency, especially in micromachining process. Recently, electrochemical discharge machining (ECDM) has demonstrated to be a potential process for microstructuring of Pyrex glass. However, the key to widening ECDM application lies in how to obtain both high efficiency and machining accuracy. In ECDM process, the discharge phenomenon is closely related with the machining quality and efficiency. The main factors are concluded that the gas film stability and gas film size, in which discharge take place around electrode. This study uses different machining parameters, in order to investigate their inferences on the gas film integrity and to further seek solving tactics.
    In the drilling process, to improve the quality of ECDM microhole, a flat sidewall-flat front tool electrode was designed to reduce taper phenomena due to the sidewall discharge. Besides, a pulse voltage is applied to improve the heat-affected zone in the rectified DC voltage. The experimental results show that the combination of flat sidewall-flat front tool and pulse voltage conspicuously increases the machining accuracy. The taper angle can be improved to 3 degree. In the microstructuring application, the results indicate that optimum combinations of both pulse voltage and tool rotational rate will realize better machining accuracy. The feasibility of 3-dimensional microstructure machining was demonstrated by a layer-by-layer ECDM micromilling machining.
    Although pulse voltage is favorable for improving the machining quality, it is hard to obtain an efficient machining rate. The pulse-off (Toff) duration allows the gas film structure to be re-constructed, which makes the sustainability of a dense gas film difficult and results in unstable and unpredictable discharges. In this study a novel pulse voltage configuration, called offset pulse voltage, was applied in the ECDM process to enhance gas film stability and to further promote the discharge performance. Results also show that both the mean machining time and time deviation were decreased around 60 % without sacrificing machining accuracy by an adequate offset voltage.

    目 錄 摘 要..............................................I Abstract..........................................III 謝 誌..............................................V 目 錄.............................................VI 圖目錄.............................................IX 表目錄...........................................XIII 第一章 緒論.........................................1 1-1 研究動機......................................1 1-2 文獻回顧......................................4 1-2-1 探討電化學放電加工機制的相關文獻..........5 1-2-2 電化學放電加工製程應用相關文獻............8 1-3 研究目的.....................................12 1-4 本論文之構成.................................15 第二章 基本原理....................................17 2-1 ECDM系統基本配置.............................17 2-2電化學放電火花形成機制........................19 2-3 ECDM的材料去除機制...........................22 第三章 電化學放電加工法於硼矽玻璃微孔加工精度改善之研究 ..........................................24 3-1 前言.........................................24 3-2 實驗設備與方法...............................28 3-2-1 實驗材料.................................28 3-2-2 實驗設備.................................30 3-2-3 實驗步驟.................................37 3-3 實驗流程.....................................38 3-4 結果與討論...................................39 3-4-1 在不同加工電壓下放電電流之響應與其加工現象.39 3-4-2 電極幾何外形對ECDM微孔加工的影響.........45 3-4-3 脈衝型態能量輸入的改善效果...............51 3-4-4 電極轉速對於電化學放電微孔加工特性之影響.57 3-5 結論.........................................60 第四章 電化學放電加工硼矽玻璃之微銑削加工可行性之研究 ..........................................61 4-1 前言.........................................61 4-2 實驗方法與設備...............................66 4-3 實驗流程.....................................69 4-4 結果與討論...................................70 4-4-1 脈衝型態能量輸入對ECDM微銑削加工的影響...70 4-4-2 不同電極轉速對ECDM微流道加工的影響.......76 4-4-3 不同進給速率對ECDM銑削加工的影響.........80 4-4-4 加工高深寬比微溝槽之進給策略.............85 4-4-5 運用ECDM於硼矽玻璃上製作三維微結構之可行 性探究.......................................91 4-5 結論.........................................93 第五章 利用補償式脈衝電壓改善電化學放電加工效率....94 5-1 前言.........................................94 5-2 實驗設備與方法............................ ..96 5-2-1 實驗設備.................................96 5-2-2 實驗方法................................100 5-3 實驗流程....................................102 5-4 結果和討論..................................103 5-4-1 不同的電壓型態對於ECDM加工特性之影響....103 5-4-2 補償式脈衝電壓對於電化學放電特性的影響..108 5-4-3 補償式脈衝電壓對於加工效率及重現性之改善效果111 5-5 結論........................................117 第六章 總結論.....................................118 6-1 不同加工參數下電化學放電電流響應的解析與探討118 6-2 實際加工製程之改善策略探討..................119 參考文獻..........................................123 作者簡介..........................................129

    1.T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki,
    “Wire electro-discharge grinding for micro-machining,”
    Annals of the CIRP, vol. 34, pp. 431-434, 1986.
    2.R. Wüthrich and V. Fascio, “Machining of non-conductive
    materials using electrochemical discharge phenomenon -
    an overview,” International Journal of Machine Tools &
    Manufacture, vol. 45, pp. 1095-1108, 2005.
    3.H. H. Kellog, “The interface observation of poles in
    water electrolysis,” Journal of Electrochemical
    Society, vol. 97, pp. 133-137, 1950.
    4.H. Kurafuji and K. Suda, “Electrical discharge drilling
    of glass,” Annals of the CIRP, vol. 16, pp. 415-419,
    1968.
    5.N. H. Cook, G. B. Foote, P. Jordan and B. N. Kalyani,
    “Experimental studies in electro-machining,”
    Transactions of ASME Journal of Engineering for
    Industry, pp. 945-950, 1973.
    6.M. Kubota, “Drilling of steel by using electrochemical
    discharge machining,” Proceedings of the International
    Conference on Production Engineering, Tokyo, pp. 51-55,
    1974.
    7.S. Tandon, V. K. Jain, P. Kumar and K. P. Rajurkar,
    “Investigations into machining of composites,”
    Precision Engineering, vol. 12, pp. 227-238, 1990.
    8.K. Allesu, A. Ghosh and M. K. Muju, “Preliminary
    qualitative approach of a proposed mechanism of
    material removal in electrical machining of glass,”
    European Journal of Mechanical Engineers, vol. 36, pp.
    202-207,1992.
    9.H. Langen, V. Fascio, R. Wüthrich and D. Viquerat,
    “Three-dimensional structuring of borosilicate glass
    devices? trajectory control,” International Conference
    of the European Society for Precision Engineering and
    Nanotechnology (EUSPEN) 2 (Eindhoven), pp. 435-438,
    2002.
    10.I. Basak and A. Ghosh, “Mechanism of spark generation
    during electrochemical discharge machining: a
    theoretical and experimental verification,” Journal
    of Materials Processing Technology, vol. 62, pp. 46-53,
    1996.
    11.I. Basak and A. Ghosh, “Mechanism of material removal
    in electrochemical discharge machining: a theoretical
    model and experimental verification,” Journal of
    Materials Processing Technology, vol. 71, pp. 350-359,
    1997.
    12.V. K. Jain, P. M. Dixit and P. M. Pandey, “On the
    analysis of the electrochemical spark machining
    process,” International Journal of Machining Tools &
    Manufacture, vol. 39, pp. 165-186, 1999.
    13.B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel,
    “Experimental investigations into electrochemical
    discharge machining (ECDM) of non-conductive ceramic
    materials,” Journal of Materials Processing
    Technology,vol. 95, pp. 145-154, 1999.
    14.C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole
    machining of borosilicate glass trough electrochemical
    discharge machining (ECDM),” Key Engineering
    Materials, vol. 196, pp. 149-166, 2001.
    15.A. Kulkarni, R. Sharan and G. K. Lal, “An
    experimental study of discharge mechanism in
    electrochemical discharge machining,” International
    Journal of Machine Tools & Manufacture, vol. 42, pp.
    1121-1127, 2002.
    16.V. Fascio, H. H. Langen, H. Bieuler and Ch.
    Comninellis, “Investigations of the spark assisted
    chemical engraving,” Electrochemistry Communications,
    vol. 5, pp. 203-207, 2003.
    17.V. Fascio, H. H. Langen, H. Bleuler and Ch.
    Comninellis, Spark assisted chemical engraving: a novel
    technology for glass microstructuring,” 54th Annual
    Meeting of the International Society of
    Electrochemistry, São Pedro, Brazil, pp. 203, 2003.
    18.R. Wüthrich, V. Fascio and H. Bleuler, “A stochastic
    model for electrode effects,” Electrochimica Acta,
    vol. 49, pp. 4005-4010, 2004.
    19.V. Fascio, R. Wüthrich and H. Bleuler, “Spark assisted
    chemical engraving in the light of
    electrochemistry,”Electrochimica Acta, vol. 49, pp.
    3997-4003, 2004.
    20.H. Tsuchiya, T. Inoue and M. Miyazaiki, “Wire electro-
    chemical discharge machining of glasses and ceramics,”
    Bulletin Japanese Society of Precision Engineering,
    vol. 19, pp. 73-74, 1985.
    21.V. K. Jain, P. S. Rao, S. K. Choudhury and K. P.
    Rajurkar, “Experimental investigations into traveling
    wire electrochemical spark machining (TW-ECSM) of
    composites,” Transactions of ASME, Journal of
    Engineering for Industry, vol. 113, pp.75-84, 1991.
    22.Y. P. Singh, V. K. Jain, P. Kumar and D. C. Agrawal,
    “Machining piezoelectric (PZT) ceramics using an
    electrochemical spark machining (ECDM) process,”
    Journal of Materials Processing Technology, vol. 58,
    pp. 24-31, 1996.
    23.V. K. Jain and N. Gautam, “Experimental investigations
    into ECSD process using various tool kinematics,” I
    International Journal of Machine Tools & Manufacture,
    vol. 38, pp. 15-27, 1998.
    24.H.-J. Lim, Y.-M. Lim, S. H. Kim and Y. K. Kwak, Self-
    aligned micro tool and electrochemical discharge
    machining (ECDM) for ceramic materials, Proceedings of
    SPIE, vol. 4416, pp. 348-353, 2001.
    25.V. Fascio, R. Wüthrich, D. Viquerat and H. Lengen, “3D
    microstructuring of glass using electrochemical
    discharge machining (ECDM),” International Symposium
    on Micromechatronics and Human Science, pp. 179-183,
    1999.
    26.V. K. Jain, S. K. Choudhury and K. M. Ramesh, “On the
    machining of alumina and glass,” International Journal
    of Machine Tools & Manufacture, vol. 42, pp. 1269-1276,
    2002.
    27.W. Y. Peng, Y. S. Liao, “Study of electrochemical
    discharge machining technology for slicing non-
    conductive brittle materials,” Journal of Material
    Processing Technology, vol. 149, pp. 263-369, 2004.
    28.D. J. Kim, Y. Ahn, S. H. Lee and Y. K. Kim, “Voltage
    pulse frequency and duty ratio effect in an
    electrochemical discharge microdrilling process of
    borosilicate glass,” International Journal of Machine
    Tools & Manufacture, vol. 46, pp 1064-1067, 2005.
    29.R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H.
    Bleuler, Ph. Mandin and G. Picard, “Physical
    principles and miniaturization of spark assisted
    chemical engraving (SACE),” Journal of Micromechanics
    and Microengineering, vol. 15, S268–S275, 2005.
    30.R. Wüthrich, U. Spaelter and H. Bleuler, “The current
    signal in spark-assisted chemical engraving (SACE):
    what does it tell us?,” Journal of Micromechanics and
    Microengineering, vol. 16, pp. 779-785, 2006.
    31.R. Wüthrich, U. Spaelter, Y. Wu and H. Bleuler, “A
    systematic characterization method for gravity-feed
    micro-hole drilling in glass with spark assisted
    chemical engraving (SACE),” Journal of Micromechanics
    and Microengineering, vol. 16, pp. 1891-1896, 2006.
    32.R. Wüthrich, B. Despont, P. Maillard and H. Bleuler,
    “Improving the material removal rate in spark-assisted
    chemical engraving (SACE) gravity-feed micro-hole
    drilling by tool vibration,” Journal of Micromechanics
    and Microengineering, vol. 16, N28-N31, 2006.
    33.C. T. Yang, S. L. Song, B. H. Yan and F. Y. Huang,
    “Improving machining performance of wire
    electrochemical discharge machining by adding SiC
    abrasive to electrolyte,” International Journal of
    Machine Tools & Manufacture, vol. 46, pp. 2044-2050,
    2006.
    34.B. H. Yan, C. T. Yang, F. Y. Huang and Z. H. Lu,
    “Electrophoretic deposition grinding (EPDG) for
    improving the precision of microholes drilled via
    ECDM,” Journal of Micromechanics and Microengineering,
    vol. 17, pp. 376-383, 2007.
    35.P. Maillard, B. Despont, H. Bleuler and R. Wüthrich,
    “Geometrical characterization of micro-holes drilled
    in glass by gravity-feed with spark assisted chemical
    engraving (SACE),” Journal of Micromechanics and
    Microengineering, vol. 17, pp. 1343-1349, 2007.
    36.S. S. Choi, M. Y. Jung, D. W. Kim, M. A. Yakshin, J. Y.
    Park and Y. Kuk, “Fabrication and microelectron gun
    arrays using laser micromachining,” Microelectronic Engineering, vol. 41-42, pp. 167-170, 1998.
    37.X.-Q. Sun, T. Masuzawa and M. Fujino, “Micro
    ultrasonic machining and its applications in MEMS,”
    Sensors and Actuators A, vol. 57, pp. 159-164, 1996.
    38.K. Egashira and T. Masuzawa, “Microultrasonic
    machining by the application of workpiece vibration,”
    Annals of the CIRP, vol. 48, pp. 131-134, 1999.
    39.R. Wüthrich, K Fujisaki, Ph. Couthy, L. A. Hof and H
    Bleuler, “Spark assisted chemical engraving (SACE) in
    microfactory,” Journal of Micromechanics and
    Microengineering, vol. 15, pp. S276-S280, 2005.
    40.H. Langen, V. Fascio, R. Wüthrich and D. Viquerat,
    “Three-dimensional microstructuring of borosilicate
    glass wafers by spark-assisted chemical engraving,”
    Proceeding of SPIE, vol. 4568, pp. 304-309, 2001.
    41.R. Wüthrich, V. Fascio, D. Viguerat and H. Lenge, “In
    suit measurement and micromachining of glass,”
    International Symposium on Micromechatronics and Human
    Science, pp. 185-191, 1999.
    42.M.-H. Han, B.-K. Min and S. J. Lee, “Improvement of
    surface integrity of electro-chemical discharge
    machining process using powder-mixed electrolyte,”
    Journal of Materials Processing Technology, vol. 191,
    pp. 224-227, 2007.
    43.Y. S. Liao and W. Y. Peng, “Study of hole-machining on
    borosilicate glass wafer by electrochemical discharge
    machining (ECDM),” Materials Science Forum, vol. 505-
    507, pp. 1207-1212, 2006.
    44.Y. S. Liao and W. Y. Peng, “Some investigations of
    electrochemical discharge phenomena amd its
    application,” 15th International Symposium on
    Electromachining (ISEM XV), Pittsburgh, pp. 469-474,
    2007.
    45.T. Iida, H. Matsushima and Y. Fukunaka, “Water
    electrolysis under a magnetic field,” Journal of the
    Electrochemical Society, vol. 154, pp. E112-E115, 2007.
    46.H. Matsushima, T. Nohira, I. Mogi and Y. Ito, “Effects
    of magnetic fields on iron electrodeposition,” Surface
    and Coatings Technology, vol. 179, pp. 245-251, 2004.
    47.H. B. Knight, The Arc Discharge, Chapman and Hall Ltd.
    1960.

    QR CODE
    :::