| 研究生: |
蘇倢倫 Jie-Lun Su |
|---|---|
| 論文名稱: |
單顆量子點熱引擎之效率分析 |
| 指導教授: |
郭明庭
李佩雯 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 量子點 、熱電元件 、熱引擎 、轉換效率 |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討在線性區間,單顆量子點連接金屬電極再接外部負載時系統轉換效率。利用格林函數求得電流與熱流,並推算出電導、熱導、席貝克係數與熱電優值( ZT ),最後得到轉換效率。在改變冷端溫度時系統轉換效率下降,而改變兩端溫差則使效率上升。同時,發現熱電優值越大,則轉換效率則以兩端溫差決定,類似卡諾引擎。除此之外,聲子熱導會明顯的抑制效率大小,因此降低聲子熱導是非常重要的議題。最後,我們討論外部電導對轉換效率的影響。我們發現當系統本身電導與外部電導的比值越靠近√(1+ZT),則系統轉換效率為最大。
In linear response regime, we study the efficiency of a single quantum dot (QD) embedded into a matrix connected to two metallic electrodes with a temperature difference. The electrical conductance, thermal conductance, Seebeck coefficient, figure of merit (ZT) and the efficiency (η) of QD junction system are calculated from electron and heat currents which are derived by the Green’s function technique. η is enhanced by increasing a temperature bias at a fixed cold-side temperature, but it is suppressed by increasing a cold-side temperature at a fixed temperature bias. Meanwhile, the behavior of system is similar to a Carnot engine when ZT is infinite. Finally, we have investigated how the η is influenced by the external conductance. The maximum value of η occurs when the ratio between the electrical conductance and external conductance equals to √(1+ZT).
[1] D.M. Rowe, Ph.D., D.Sc., “Thermoelectric Handbook ( Macro To Nano )”, CRC, New York (2006).
[2] A.F. Ioffe, “Semiconductor thermoelements and Thermoelectric cooling”, Infosearch Limited, London (1957).
[3] H.J. Goldsmid, b. Sc. and R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. 5, 368 (1954).
[4] H. J. Goldsmid, A. R. Sheard, and D. A. Wright, “The performance of bismuth telluride thermojunctions”, Br. J. Appl. Phys. 9, 365 (1958).
[5] Arun Majumdar, “Thermoelectricity in Semiconductor Nanostructures” Science 303, 777-778 (2004).
[6] Snyder, G. Jeffrey, and Eric S. Toberer. "Complex thermoelectric materials" Nature materials 7, 105 – 114 (2008).
[7] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 47, 12727 (1993).
[8] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B 47, 16631 (1993).
[9] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 53, R10493 (1996).
[10] T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science 297, 2229-2232 (2002).
[11] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597-602 (2001).
[12] Yu-Ming Lin and M. S. Dresselhaus, “Thermoelectric properties of superlattice nanowires”, Phys. Rev. B 68, 075304 (2003).
[13] T. E. Humphrey and H. Linke, “Reversible Thermoelectric Nanomaterials”, Phys. Rev. Lett. 94, 096601 (2005).
[14] J. Cai and G. D. Mahan, “Transport properties of quantum dot arrays”, Phys. Rev. B 78, 035115 (2008).
[15] P. M. Wu, J. Gooth, X. Zianni, S. F. Svensson, J. G. Gluschke, et al. “Large Thermoelectric Power Factor Enhancement Observed in InAs Nanowires”, Nano Letters 13, 4080–4086, 2013.
[16] H. Nakamura, T. Ohto, T. Ishida and Y. Asai, “Thermoelectric Efficiency of Organometallic Complex Wires via Quantum Resonance Effect and Long-Range Electric Transport Property”, J. Am. Chem. Soc., 513 , 16545–16552 (2013).
[17] D. M. -T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[18] David M.-T. Kuo, "Thermoelectric Effects of Molecular Quantum Dot Junctions with Strong Electron Phonon Interactions", Jpn. J. Appl. Phys. 49, 095205 (2010).
[19] M. Tsaousidou and G. P. Triberis “Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency”, J. Phys.: Condens. Matter 22, 355304 (2010).
[20] R. Yang and G. Chen, “Thermal conductivity modeling of periodic two-dimensional nanocomposites”, Phys. Rev. B 69, 195316 (2004).
[21] T. Markussen, A.-P. Jauho, and M. Brandbyge, “Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics”, Phys. Rev. Lett. 103, 055502 (2009).
[22] Y. Meir, N.S. Wingreen and P.A. Lee, “Low-temperature transport through a quantum dot: The Anderson model out of equilibrium”, Phys. Rev. Lett. 70, 2601 (1993).
[23] D. M.T. Kuo, “Effect of interlevel coulomb interaction on the tunneling current through a single quantum dot”, Physica E 27, 355-361 (2005).
[24] D. M. T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. 99, 086803 (2007).
[25] D. M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000).
[26] David M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
[27] K. Schwab, E. A. Henriksen, J. M. Worlock and M. L. Roukes, “Measurement of the quantum of thermal conductance”, Nature 404, 974-977 (2000).
[28]曾彥鈞,“低維度系統之熱電特性”,博士論文,國立中央大學,民國103年。
[29] Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath. “Silicon nanowires as efficient thermoelectricmaterials” ,Nature 451, 168 (2004).