| 研究生: |
張銘瑋 Ming-Wei Chang |
|---|---|
| 論文名稱: |
燃油程序之PM₂.₅及PAHs排放特性研究 Characteristics of PM₂.₅and PAHs Emitted from Oil-fired Processes |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 燃油程序 、PM2.5 、可過濾性微粒 、可凝結性微粒 、PAHs 、SCR觸媒 |
| 外文關鍵詞: | Oil-fired Processes, PM2.5, filterable particulate matter, condensable particulate matter, polycyclic aromatic hydrocarbon compounds, SCR catalyst |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對國內某大型燃油電廠進行煙道排氣之採樣分析,並就FPM、FPM2.5、CPM及PAHs濃度及排放特性進行探討。研究燃油電廠與相同空氣污染防制設備(ESP)的兩個機組(A、B機組)之煙氣排放,另於B機組於鍋爐低負載(B1)及高負載(B2)條件進行排氣特性之比較。結果顯示A組及B1組鍋爐煙囪排放之FPM濃度分別為0.14及0.17 mg/Nm3,FPM2.5 排放濃度為0.11及0.09 mg/Nm3,而兩座燃油鍋爐之CPM排放濃度分別為24.0及60.2 mg/Nm3,皆遠高於FPM;B機組負載由3成提升至8成時,FPM及FPM2.5 濃度皆呈上升趨勢,濃度分別為1.10及0.60 mg/Nm3,FPM2.5為3成負載之6.5倍,而CPM濃度為65.0 mg/Nm3,與原負載條件相比並無明顯變化,顯示負載對FPM排放影響較CPM顯著。PAHs部分,A組及B1組之PAHs總濃度分別為3.10及2.30 μg/Nm3,而B2組之PAHs濃度為2.44 μg/Nm3,三組之氣固相分布均以氣相為主,PAHs物種分布方面, 以Nap、2-MN及Pyr為主要排放物種;毒性當量方面,A、B1及B2組之PAHs毒性當量濃度分別為48.4、5.0及13.5 ng-BaPeq/Nm3,其中BcFE及BaP為主要之貢獻物種。另外,排放係數計算結果顯示燃油電廠A組每燃燒1公升重油之FPM、FPM2.5、CPM及PAHs排放量分別為1.7、1.3、288及0.04 mg;而B1及B2組則分別為2.3、1.2、818、0.03 mg及14.1、7.7、834、0.03 mg。顯示CPM之排放係數皆遠高於FPM,而負載是影響FPM排放係數的重要因素,研究結果顯示鍋爐負載及溫度對PAHs及PM排放有一定之影響,值得進一步探討以降低污染物之排放。此外由於SCR 觸媒對PAHs具去除效力,本研究亦針對商用 SCR 觸媒於電廠操作條件下探討不同溫度對Ant之去除效率,結果顯示其去除效率為96-99%。
The flue gas emitted from an oil-fired power plant was sampled to analyze the concentrations and characteristics of FPM, FPM2.5, CPM and PAHs. Two boilers (A and B) with the same air pollution control device (APCD) were studied, and the flue gas characteristics of boiler B under different loads were discussed. The results show that the FPM concentrations emitted from the stacks of boilers A and B are 0.14 and 0.17 mg/Nm3, respectively, and the FPM2.5 concentrations are 0.11 and 0.09 mg/Nm3, respectively, while the CPM concentrations of the two boilers are 24.0 and 60.2 mg/Nm3, respectively. As the load of boiler B is increased from 30% to 80%, both FPM and FPM2.5 concentrations reveal upward trends, and the concentrations measured are 1.10 and 0.60 mg/Nm3, respectively, which are 6.5 times that of the 30% load. On the other hand, the CPM concentration is 65.0 mg/Nm3, which does not vary significantly compared with the original load condition, indicating that the effect of load on FPM emission is more significant than that of CPM. In the PAHs part, the total PAHs emitted from boiler A and boiler B are 3.10 and 2.30 μg/Nm3 respectively, while the PAHs concentration of boiler B at 80% load is 2.44 μg/Nm3, and the PAHs are mainly distributed in gas-phase. In terms of toxicity, the toxic equivalent concentrations of boiler A (A), boiler B 30% load (B1) and boiler B 80% load (B2) are 48.4, 5.0 and 13.5 ng-BaPeq/Nm3, respectively, with BcFE and BaP being the main contributing congeners. In addition, the emission factors calculated on the basis of fuel consumption indicate that the FPM, FPM2.5, CPM and PAHs emitted from boiler A of the oil-fired power plant are 1.7, 1.3, 288 and 0.04 mg/L; and the B1 and B2 are 2.3, 1.2, 818, 0.03 mg/L and 14.1, 7.7, 834, 0.03 mg/L, respectively. It shows that the emission factor of CPM is much higher than that of FPM, and the load is the main factor affecting the emission factor of FPM. The results show that boiler load and flue gas temperature have a certain influence on PAHs and PM emissions, and efforts are needed for further reduction of pollutant emissions. In addition, this study also investigates the removal efficiencies of PAHs achieved with commercial SCR catalyst at different temperatures (325°C - 400°C) and the results show that the efficiencies are within the range of 96–99%.
Andersson, J. T., Achten, C. (2015). Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycyclic Aromatic Compounds, 35(2-4), 330-354.
Besombes, J. L., Maı̂tre, A., Patissier, O., Marchand, N., Chevron, N., Stoklov, M., Masclet, P. (2001). Particulate PAHs observed in the surrounding of a municipal incinerator. Atmospheric Environment, 35(35), 6093-6104.
Chang, K. F., Fang, G. C., Chen, J. C., Wu, Y. S. (2006). Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004. Environmental Pollution, 142(3), 388-396.
Chen, S. J., Hsieh, L. T., Chiu, S. C. (2003). Characteristics of the PAH emissions from the incineration of livestock wastes with/without APCD. Environment International, 28(7), 659-668.
Chen, T. W., Chen, J. C., Liu, Z. S., Chi, K. H., Chang, M. B. (2022). Characteristics of PM and PAHs emitted from a coal-fired boiler and the efficiencies of its air pollution control devices. Journal of the Air & Waste Management Association, 72(1), 85-97.
Cooper, C. D., & Alley, F. C. (2010). Air Pollution Control: A Design Approach. Waveland Press.
Dai, J., Li, S., Zhang, Y., Wang, R., Yu, Y. (2008). Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city, China. Environmental Monitoring and Assessment, 147(1), 317-326.
Dat, N. D., Chang, M. B. (2017). Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment, 609, 682-693.
Dean, A. H. (1978). Study of electrostatic precipitators installed on oil-fired boilers. Volume 2. Final Report (No. EPRI-FP-792 (Vol. 2)). Southern Research Inst., Birmingham, AL (USA).
Dismukes, E. B. (1975). Conditioning of fly ash with ammonia. Journal of the Air Pollution Control Association, 25(2), 152-156.
Hsu, W. T., Liu, M. C., Hung, P. C., Chang, S. H., Chang, M. B. (2016). PAH emissions from coal combustion and waste incineration. Journal of Hazardous Materials, 318, 32-40.
Huang, R., Wu, H., Yang, L. (2020). Investigation on condensable particulate matter emission characteristics in wet ammonia-based desulfurization system. Journal of Environmental Sciences, 92, 95-105.
Huynh, C. K., Duc, T. V., Schwab, C., Rollier, H. (1984). In-stack dilution technique for the sampling of polycyclic organic compounds. Application to effluents of a domestic waste incineration plant. Atmospheric Environment (1967), 18(2), 255-259.
International Agency for Research on Cancer. (1987). Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42. Lyon, France:: IARC.
Keller, C. D., Bidleman, T. F. (1984). Collection of airborne polycyclic aromatic hydrocarbons and other organics with a glass fiber filter-polyurethane foam system. Atmospheric Environment (1967), 18(4), 837-845.
Krigmont, H. V. (2006). Ammonia conditioning of flue gases. Allied Environmental Technologies, Inc.
Krigmont, H. V., Ferrigan, J. J. (2018). Dual Flue Gas Conditioning Processes, Technology and Experience. International Conference on Electrostatic Precipitation.
Lee, W. J., Liow, M. C., Tsai, P. J., Hsieh, L. T. (2002). Emission of polycyclic aromatic hydrocarbons from medical waste incinerators. Atmospheric Environment, 36(5), 781-790.
Lerda, D. (2011). Polycyclic aromatic hydrocarbons (PAHs) factsheet. Belgium, Joint Research Centre, European Commission, 34.
Li, C. T., Mi, H. H., Lee, W. J., You, W. C., Wang, Y. F. (1999). PAH emission from the industrial boilers. Journal of Hazardous Materials, 69(1), 1-11.
Li, J. W. Li, X. D., Li, M., Lu, S. Y., Yan, J. H., Xie, W. Y., Liu, C. H., Qi. Z. F. (2016). The influence of air pollution control devices (APCDs) on the PAHs distributions in flue gas from an ultra-low emission coal-fired power plant. Energy & Fuels, 30(11), 9572-9579.
Li, J. W., Qi, Z. F., Li, M., Wu, D. L., Zhou, C. Y., Lu, S. Y., Yan, J. H., Li, X. D. (2017). Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant. Energy & Fuels, 31(2), 1778-1785.
Li, J.W., Li, X.D., Zhou, C.Y., Li, M., Lu, S.Y., Yan, J.H., Qi, Z.F.(2017). Study on the influencing factors of the distribution characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter. Energy & Fuels, 31(12), 13233-13238.
Li, X. D., Li, J .W., Wu, D. L., Lu, S. Y., Zhou, C. Y., Qi. Z. F., Li, M., Yan, J. H. (2018). Removal effect of the low-low temperature electrostatic precipitator on polycyclic aromatic hydrocarbons. Chemosphere, 211, 44-49.
Liljelind, P., Unsworth, J., Maaskant, O., Marklund, S. (2001). Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction. Chemosphere, 42(5-7), 615-623.
Mastral, A. M., Callen, M. S. (2000). A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science & Technology, 34(15), 3051-3057.
Morisaki, H., Nakamura, S., Tang, N., Toriba, A., Hayakawa, K. (2016). Benzo [c] fluorene in urban air: HPLC determination and mutagenic contribution relative to benzo [a] pyrene. Analytical Sciences, 32(2), 233-236.
Nakomcic-Smaragdakis, B., Cepic, Z., Cepic, M., Stajic, T. (2014). Data analysis of the flue gas emissions in the thermal-power plant firing fuel oil and natural gas. International Journal of Environmental Science and Technology, 11(2), 269-280.
Nisbet, I. C., Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300.
Officer, E. W. A., Huntley, R. (1998). REPORT ON REVISIONS TO 5TH EDITION AP-42 Section 1.3 Fuel Oil Combustion.
Paulik, L. B., Donald, C. E., Smith, B. W., Tidwell, L. G., Hobbie, K. A., Kincl, L., Haynes, E. N., Anderson, K. A. (2016). Emissions of polycyclic aromatic hydrocarbons from natural gas extraction into air. Environmental Science & Technology, 50(14), 7921-7929.
Peng, Y., Shi, N., Wang, T., Wang, J., Zhang, Y., Chen, W. Y., Pan, W. P. (2021). Investigating the effect of flue gas temperature and excess air coefficient on the size distribution of condensable particulate matters. Fuel, 298, 120866.
Pergal, M. M., Tesic, Z. L., Popović, A. R. (2013). Polycyclic aromatic hydrocarbons: temperature driven formation and behavior during coal combustion in a coal-fired power plant. Energy & Fuels, 27(10), 6273-6278.
Ravindra, K., Sokhi, R., Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Ross, A. B., Bartle, K. D., Hall, S., Jones, J. M., Williams, A., Kubica, K., Fynes, G., Owen, A. (2011). Formation and emission of polycyclic aromatic hydrocarbon soot precursors during coal combustion. Journal of the Energy Institute, 84(4), 220-226.
Samburova, V., Zielinska, B., Khlystov, A. (2017). Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity?. Toxics, 5(3), 17.
Shanthakumar, S., Singh, D. N., Phadke, R. C. (2008). Influence of flue gas conditioning on fly ash characteristics. Fuel, 87(15-16), 3216-3222.
Shukla, S. K., Mangwani, N., Rao, T. S., Das, S. (2014). Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In Microbial Biodegradation and Bioremediation. Elsevier, 203-232.
Singh, R., Shukla, A. (2014). A review on methods of flue gas cleaning from combustion of biomass. Renewable and Sustainable Energy Reviews, 29, 854-864.
Sippula, O., Hokkinen, J., Puustinen, H., Yli-Pirilä, P., Jokiniemi, J. (2009). Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmospheric Environment, 43(32), 4855-4864.
Tao, LX., Wang, YY., Yue, CM., Shen, ZG., Liu, ZC., Liu, QZ., Lu, JC., Ding, HL., Pan, WG., Wang, J. (2020). Synergistic Emission Reduction of Particulate Pollutants in Coal-fired Power Plants Using Ultra-low Emission Technology. Aerosol and Air Quality Research, 20(11), 2529-2535.
US Environmental Protection Agency (US EPA). (2002). EPA Air Pollution Control Cost Manual‐Sixth Edition.
Wang, K., Yang, L., Li, J., Sheng, Z., He, Q., Wu, K. (2020). Characteristics of condensable particulate matter before and after wet flue gas desulfurization and wet electrostatic precipitator from ultra-low emission coal-fired power plants in China. Fuel, 278, 118206.
Wang, X., Lian, W., Fu, X., Basset, J., Lefebvre, F. (2006). Structure, preparation and photocatalytic activity of titanium oxides on MCM-41 surface. Journal of Catalysis, 238(1), 13-20.
Weber, R., Sakurai, T., Hagenmaier, H. (1999). Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5–WO3 catalysts. Applied Catalysis B: Environmental, 20(4), 249-256.
Yang, F., Zhang, Q., Guo, H., Zhang, S. (2010). Evaluation of cytotoxicity, genotoxicity and teratogenicity of marine sediments from Qingdao coastal areas using in vitro fish cell assay, comet assay and zebrafish embryo test. Toxicology in Vitro, 24(7), 2003-2011.
Yang, H. H., Arafath, S. M., Lee, K. T., Hsieh, Y. S., Han, Y. T. (2018). Chemical characteristics of filterable and condensable PM2.5 emissions from industrial boilers with five different fuels. Fuel, 232, 415-422.
Yang, H. H., Arafath, S. M., Wang, Y. F., Wu, J. Y., Lee, K. T., Hsieh, Y. S. (2018). Comparison of coal-and oil-fired boilers through the investigation of filterable and condensable PM2.5 sample analysis. Energy & Fuels, 32(3), 2993-3002.
Yang, H. H., Gupta, S. K., Dhital, N. B., Lee, K. T., Hsieh, Y. S., Huang, S. C. (2019). Establishment of indicatory metals for filterable and condensable PM2.5 emitted from important stationary emission sources. Energy & Fuels, 33(11), 10878-10887.
Yang, H. H., Lee, W. J., Chen, S. J., Lai, S. O. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60(2), 159-174.
Yasuda, K., Takahashi, M. (1998). The emission of polycyclic aromatic hydrocarbons from municipal solid waste incinerators during the combustion cycle. Journal of the Air & Waste Management Association, 48(5), 441-447.
Zheng, C.H., Zheng, H., Shen, J.L., Gao, W.C., Yang, Z.D., Zhao, Z.Y., Wang, Y.F., Zhang, H., Gao, X. (2020). Evolution of condensable fine particle size distribution in simulated flue gas by external regulation for growth enhancement. Environmental Science & Technology, 54(7), 3840-3848.
Zhu, J., Zhao, Q., Yao, Y., Luo, S., Guo, X., Zhang, X., Zeng, Y., Yan, K. (2012). Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator. Journal of Electrostatics, 70(3), 285-291.
行政院環保署空保處(2018),「鍋爐空氣污染物排放標準草案公聽會報告」,行政院環保署。
行政院環保署環檢所「NIEA A412.73A排放管道中氯化氫檢測方法-硫氰化汞比色法」。
行政院環境檢驗所「NIEA A212.11B 排放管道中細懸浮微粒(PM2.5)檢測方法」。
行政院環境檢驗所「NIEA A214.71C 排放管道中可凝結性微粒檢測方法」。
行政院環境檢驗所「NIEA A435.71C 空氣中無機酸類之檢測方法-離子層析電導度法」。
行政院環境檢驗所「NIEA A730.70C 排放管道中多環芳香烴之檢測方法-氣相層析質譜法」。
吳以壯(2005),以選擇性觸媒還原技術同時去除NO及VOCs之效率測試研究,碩士論文,交通大學。
吳宗榮(1989),工業觸媒概論(2版)。新竹,國興出版社。
呂佳明(2017),燃煤及垃圾焚化程序之PM2.5與 PAHs 排放特性研究,碩士論文,中央大學。
孫偉力(2020),降低煙氣溫度提升既存靜電集塵器去除飛灰效率之實廠測試,碩士論文,中山大學。
徐瑋廷(2015),以釩鈦 SCR 觸媒轉換元素汞及去除NO與Dioxin之效率探討,碩士論文,中央大學。
張慶源、謝哲隆、陳家豪(2004),觸媒焚化及高級氧化程序處理多環芳香族之研究,個別計畫,台灣大學。
郭承彬、蔡志賢、張章堂(2016),「本土固定污染源PM2.5檢測係數與美國PM Calculator資料庫比較」。
陳志成、張鳳儀、陳志明、郭建鑠(2008),「應用釩鎢鈦觸媒處理垃圾焚化廢氣之效率與改質研究」,國科會研究計畫,弘光科技大學
黃盛修、陳志傑、李婉甄、林志威、簡愛倫(2018),「固定污染源排放管道細懸浮微粒(PM2.5)調查檢測及管制策略研訂計畫」,行政院環保署。
黃盛修、陳志傑、楊錫賢(2019),「固定污染源排放管道細懸浮微粒(PM2.5)調查管制及法規修訂計畫」,行政院環境保護署。
楊文毅(2000),鈀觸媒氧化焚化廢氣中有機物之研究,碩士論文,中興大學。