跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林恩聖
En-Sheng Lin
論文名稱: 具油水分離薄膜不鏽鋼網之製備與特性分析
Preparation and Characteristic Analysis of Stainless Steel Mesh with Oil-Water Separation Film
指導教授: 詹佳樺
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 71
中文關鍵詞: 油水分離疏水溶膠凝膠法乳化液
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 油汙染的影響使得油水分離技術受到重視,而此技術可以應用在薄膜製程。常見於油水分離的薄膜製程有靜電紡絲法、電漿表面處理、模板合成法、自組裝法及溶膠凝膠法。而溶膠-凝膠法有著製程簡便、低成本、低汙染、高穩定性的優勢。因此本研究以溶膠-凝膠法的方式製作出奈米尺度的SiO2顆粒,並藉由表面改質對其進行化學特性的變化,進一步的應用在油水分離的實驗上。
    製備出M-SiO2-OH-SSM後,為了證明其表面的物理與化學特性,除了對不同時間點的不鏽鋼網(SSM)進行FTIR、SEM、WCA的量測,分析其表面結構、粒徑大小及水接觸角的變化。接著在對製程溫度與時間參數的進行調控,可以製作出擁有最高WCA,並且在多項耐久性測試上都有著維持穩定且高效的分離效率。最後進行更深入的乳化液測試,在一定的濃度下,可以穩定且完整的乳化液分離。
    本研究成功的以實驗室自行合成的SiO2奈米球為材料,改質後製備在SSM上,得到的M-SiO2-OH-SSM具有超疏水特性、高效且穩定的分離效率、極佳的機械性質,並且可以用在乳化液分離上。


    The influence of oil pollution makes oil-water separation technology pay attention, and this technology can be applied in the thin film process. Common thin film processes used in oil-water separation include electrospinning method, plasma treatment, templates method, self-assembly method and Sol-Gel method. The sol-gel method has the advantages of simple process, low cost, low pollution, and high stability. Therefore, in this study, nanometer-scale SiO2 particles were produced by the sol-gel method, and the chemical properties were changed by surface modification, which was further applied to the experiment of oil-water separation.
    After preparing M-SiO2-OH-SSM, in order to prove the physical and chemical characteristics of the surface. Measuring FTIR, SEM and WCA of the stainless steel mesh (SSM) at different time points. Furthermore, analyze the change of surface structure and particle size water contact angle. Then, by adjusting the temperature and time parameters of the process, we can produce the highest WCA which can maintain stable and efficient separation efficiency in many durability tests. Finally, a more in-depth emulsion test is carried out. Under a certain concentration, stable and complete emulsion separation can be achieved.
    In this study, SiO2 nanoparticle synthesized in the laboratory were used as materials, and they were prepared on SSM after modification. The product M-SiO2-OH-SSM has super-hydrophobic characteristics, high efficiency and stable separation efficiency, and excellent mechanical properties which can be used in emulsion separation.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第1章 緒論 1 1-1 前言 1 1-2 油水分離薄膜製備方式 2 1-3 溶膠-凝膠法(Sol-Gel method) 13 1-4 親疏水原理 15 1-5 油水分離基礎理論 17 1-6 研究動機 19 第2章 實驗方法 20 2-1 實驗藥品與儀器 20 2-1-1 實驗藥品 20 2-1-2 實驗儀器 21 2-2 具油水分離薄膜不鏽鋼網製程 23 2-2-1 疏水奈米球(M-SiO2)製作 23 2-2-2 SSM清潔 24 2-2-3 SiO2與SSM鍵結 25 2-2-4 SSM上SiO2修飾 25 2-3 實驗分析方式 26 2-3-1 水接觸角量測方式 26 2-3-2 FTIR量測方式 26 2-3-3 SEM量測方式 26 2-3-4 AFM量測方式 27 2-3-5 無乳油水分離效率分析與計算方式 27 2-3-6 乳化液配置 28 2-3-7 乳化液分離效率分析 28 第3章 結果與討論 29 3-1 具油水分離薄膜不鏽鋼網製備及其製程探討 29 3-1-1 M-SiO2-SSM製備及其特性分析 29 3-1-2 M-SiO2-OH-SSM製備及其特性分析 32 3-2 油水分離實驗與M-SiO2-OH-SSM的耐久性測試 46 3-2-1 油水分離效率分析 46 3-2-2 M-SiO2-OH-SSM耐久性測試 48 3-2-3 乳化液分離 50 第4章 結論 54 參考文獻 55  

    [1] A. R. Shirin-Abadi, M. Gorji, S. Rezaee, P. G. Jessop, and M. F. Cunningham, "CO2-Switchable-hydrophilicity membrane (CO2-SHM) triggered by electric potential: faster switching time along with efficient oil/water separation," Chem Commun (Camb), vol. 54, no. 61, pp. 8478-8481, Jul 26 2018.
    [2] J.J. Li, L.T. Zhu, and Z.H. Luo, "Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation," Chemical Engineering Journal, vol. 287, pp. 474-481, 2016.
    [3] C. Tan, Q. Li, Y. Li, C. Zhang, and L. Xu, "Preparation of a stable superhydrophobic boat for efficient separation and removal of oil from water," RSC Advances, vol. 6, no. 59, pp. 53813-53820, 2016.
    [4] M. Zhang, Z. Wu, F. Meng, and H. Lin, "Facile preparation of grass-like hierarchical structured γ-AlOOH coated stainless steel mesh with superhydrophobic and superoleophilic for highly efficient oil-water separation," Separation and Purification Technology, vol. 212, pp. 347-354, 2019.
    [5] W. Ma, Z. Guo, J. Zhao, Q. Yu, F. Wang, J. Han, H. Pan, J. Yao, Q. Zhang, S. K. Samal, S. C. D. Smedt, C. Huang, "Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation," Separation and Purification Technology, vol. 177, pp. 71-85, 2017.
    [6] J. Ju, T. Wang, and Q. Wang, "Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 481, pp. 151-157, 2015.
    [7] F. Chen, J. Song, Z. Liu, J. Liu, H. Zheng, S. Huang, J. Sun, W. Xu, and X. Liu, "Atmospheric Pressure Plasma Functionalized Polymer Mesh: An Environmentally Friendly and Efficient Tool for Oil/Water Separation," ACS Sustainable Chemistry & Engineering, vol. 4, no. 12, pp. 6828-6837, 2016.
    [8] T. Li, L. Wang, K. Zhang, Y. Xu, X. Long, S. Gao, R. Li, Y. Yao, "Freestanding Boron Nitride Nanosheet Films for Ultrafast Oil/Water Separation," Small, vol. 12, no. 36, pp. 4960-4965, Sep 2016.
    [9] C. Chen, C. Du, D. Weng, A. Mahmood, D. Feng, and J. Wang, "Robust Superhydrophobic Polytetrafluoroethylene Nanofibrous Coating Fabricated by Self-Assembly and Its Application for Oil/Water Separation," ACS Applied Nano Materials, vol. 1, no. 6, pp. 2632-2639, 2018. 

    [10] O. Arslan, Z. Aytac, and T. Uyar, "Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification," ACS Appl Mater Interfaces, vol. 8, no. 30, pp. 19747-54, Aug 3 2016.
    [11] D. Lin, X. Zeng, H. Li, and X. Lai, "Facile fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via layer-by-layer assembly," Cellulose, vol. 25, no. 5, pp. 3135-3149, 2018.
    [12] J. Li, H. Ding, H. Zhang, C. Guo, X. Hong, L. Sun, and F. Ding, "Superhydrophobic Methylated Silica Sol for Effective Oil-Water Separation," Materials (Basel), vol. 13, no. 4, Feb 13 2020.
    [13] T. Young,"An EDssay on the Cohesion of Fluids," Philosophical Transactions of the Royal Society of London, Vol. 95, pp. 65-87,1804.
    [14] R. N. Wenzel,"Resistance of Solid Surfaces to Wetting by Water," Industrial & Engineering Chemistry, Vol. 28, pp. 988-994,1936.
    [15] A. B. D. Cassie and S. Baxter," Wettability of Porous Surfaces." Transactions of the Faraday Society, Vol. 40, pp. 546-551,1944.
    [16] W. Ma, M. Zhang, Z. Liu, M. Kang, C. Huang, and G. Fu, "Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation," Journal of Membrane Science, vol. 570-571, pp. 303-313, 2019.
    [17] L. Makkonen, "A thermodynamic model of contact angle hysteresis," J Chem Phys, vol. 147, no. 6, p. 064703, Aug 14 2017.
    [18] D Quéré, A Lafuma, J Bico, "Slippy and sticky microtextured solids," Nanotechnology,Vol. 14 pp. 1109–1112, 2003.
    [19] H. S. Wei, C. C. Kuo, C. C. Jaing, Y. C. Chang, and C. C. Lee, "Highly transparent superhydrophobic thin film with low refractive index prepared by one-step coating of modified silica nanoparticles," Journal of Sol-Gel Science and Technology, vol. 71, no. 1, pp. 168-175, 2014.
    [20] F. Ahangaran, A. Hassanzadeh, and Sirous Nouri, "Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent," International Nano Letters, vol. 10, 2013.
    ,[21] C. Jiang, W. Liu, Y. Sun, C. Liu, M. Yang, and Z. Wang, "Fabrication of durable superhydrophobic and superoleophilic cotton fabric with fluorinated silica sol via sol-gel process," Journal of Applied Polymer Science, vol. 136, no. 4, 2019. 

    [22] A. Xie, J. Cui, Y. Chen, J. Lang, C. Li, Y. Yan, J. Dai, "One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation," Surface and Coatings Technology, vol. 361, pp. 19-26, 2019.
    [23] S. W. Han, K‐D. Kim, H. O. Seo, I. H. Kim, C. S. Jeon, J. E. An, J. H. Kim, S. Uhm, Y. D. Kim, "Oil-Water Separation Using Superhydrophobic PET Membranes Fabricated Via Simple Dip-Coating Of PDMS-SiO2 Nanoparticles," Macromolecular Materials and Engineering, vol. 302, no. 11, 2017.
    [24] C. Wei, F. Dai, L. Lin, Z. An, Y. He, X. Chen, L. Chen, Y. Zhao "Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation," Journal of Membrane Science, vol. 555, pp. 220-228, 2018.
    [25] A. Cireli, N. Onar, M. F. Ebeoglugil, I. Kayatekin, B. Kutlu, O. Culha, E. Celik, "Development of flame retardancy properties of new halogen-free phosphorous doped SiO2 thin films on fabrics," Journal of Applied Polymer Science, vol. 105, no. 6, pp. 3748-3756, 2007.
    [26] D. S. Klimescha, A. Ray, "DTA-TGA evaluations of the CaO ± Al2O3 ± SiO2 ± H2O system treated hydrothermally," Thermochimica Acta, vol. 334, pp. 115-122, 1999.
    [27] F. H. Clauser, "Turbulent Boundary Layers in Adverse Pressure Gradients," Journal of the Aeronautical Sciences, vol. 21, no. 2, pp. 91-108, 1954.
    [28] A. M. Al-Sabagh, " The relevance HLB of surfactants on the stability of asphalt emulsion," Colloids and Surfaces A :Physicochem. Eng. Aspects, vol. 204, pp. 73-83, 2002.
    [29] X. Li, Q. Zhang, W. Zhang, R. Qu, Y. Wei, and L. Feng, "Smart Nylon Membranes with pH-Responsive Wettability: High-Efficiency Separation on Demand for Various Oil/Water Mixtures and Surfactant-Stabilized Emulsions," Advanced Materials Interfaces, vol. 5, no. 21, 2018.
    [30] B. He ,Y. Ding, J. Wang, Z. Yao, W. Qing, Y. Zhang, F. Liu, C. Y. Tang, "Sustaining fouling resistant membranes: Membrane fabrication, characterization and mechanism understanding of demulsification and fouling-resistance," Journal of Membrane Science, vol. 581, pp. 105-113, 2019.
    [31] https://commons.wikimedia.org/wiki/File:Boundarylayer.png

    QR CODE
    :::