| 研究生: |
余盈盈 Ying-Ying Yu |
|---|---|
| 論文名稱: |
三片稜鏡玻璃選取利用視圖法與優化方法對色差的校正 Diagram method and optimization of triplet prisms for minimizing the chromatic aberration |
| 指導教授: |
孫文信
Wen-Shing Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 三片稜鏡 、超消色差 、阻尼最小二乘法 、視圖法 |
| 外文關鍵詞: | triplet prisms, super-achromat, damped least square method, diagram method |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文透過研究玻璃材料的選取方法,來找出色差最小的三片稜鏡組合。由於真實光線的公式較為複雜,故本文先做三波段 F-line (0.4861 μm)、d-line (0.5876 μm)、C-line (0.6563 μm) 近軸色差校正,在總偏向角Dd 固定為3度及校正一次色差𝜀F,C和二次色差 𝜀𝑑,C條件下,可求得三片稜鏡的個別偏向角,而後新增 F-line 至 d-line 間的中間 波段 A-line (0.5369 μm),與 d-line 至 C-line 間的中間波段 B-line (0.6219 μm),即五段波長之超消色差校正。
經過推導後得出的材料選取方法−視圖法,即比較材料 𝑃d,C−𝑃A,B 與𝑃d,C−𝑉d 之圖,能快速且有效地獲得色差較小之三片玻璃稜鏡組合。而本研究將以視圖法為基礎所挑選出的三片玻璃稜鏡組合,輔以撰寫優化的MATLAB 程式,對視圖法所選取的三片玻璃稜鏡組合優化,以取得真實光線之最小色差的結果。
The goal of this research is to obtain a triplet prism combination with least chromatic aberration by selecting glass materials. For the complexity of the real ray chromatic aberration formula, first we corrected the paraxial chromatic aberration of F-line (0.4861 μm), d-line (0.5876 μm) and C-line (0.6563 μm), we obtained each deviation angle of a triplet prism by fixing the total d-line deviation angle at 3 degree and corrected the primary chromatic aberration 𝜀F,C and the secondary chromatic aberration 𝜀𝑑,C. Then we defined two wavelengths A-line (0.5369μm) and B-line (0.6219μm), where A-line (0.5369μm) is the wavelength between F-line (0.4861 μm) and d-line (0.5876 μm), and B-line (0.6219μm) is the wavelength between d-line (0.5876 μm) and C-line (0.6563 μm). After that we corrected their chromatic aberration to obtain a super-achromat triplet prism corrected at 5 wavelengths.
Deriving the formula of paraxial chromatic aberration of a triplet prism, we are able to obtain a diagram method which can quickly obtain a triplet prism combination with small chromatic aberration. The method is achieved by comparing the area ratio of the 𝑃d,C-PA,B and Pd,C-Vd figures of the materials. After applied diagram method to select a triplet prism combination, we write an optimization code which is based on damped least square method to minimize the chromatic aberration. Then obtain a triplet prism combination with the least real ray chromatic aberration.
[1] 張弘, 幾何光學 (初版, 臺北市, 東華書局1993)。
[2] M. Herzberzger, “The dispersion of optical glass,” J. Opt. Soc. Am. 32, 70-77 (1942).
[3] E. L. McCarthy, “Optical system with corrected secondary spectrum,” U. S. Patent 2,698,555 (4 January 1955).
[4] N. V. D. Lessing, “Selection of optical glasses in apochromats,” J. Opt. Soc. Am. 47(10), 955-958 (1957).
[5] N. V. D. Lessing, “Selection of optical glasses in Taylor triplet (Special method),” J. Opt. Soc. Am. 48(8), 558-562 (1958).
[6] N. V. D. Lessing, “Selection of optical glasses in Taylor triplet (General method),” J. Opt. Soc. Am. 49(1), 31-34 (1959).
[7] R. E. Stephens, “Selection of glasses for three-color achromats,” J. Opt. Soc. Am. 49(4), 398-401 (1959).
[8] R. E. Stephens, “Four-color achromats and superchromats,” J. Opt. Soc. Am. 50(10), 1016-1019 (1960).
[9] N. V. D. Lessing, “Selection of optical glasses in superchromats,” Appl. Opt. 9(7), 1665-1668 (1970).
[10] C. G. Wynne, “Secondary spectrum correction with normal glasses,” Optical communications 21(3), 419-424 (1977).
[11] K. D. Sharma and S. V. Rama Gopal, “Design of achromatic doublets: evaluation of the double-graph technique,” Appl. Opt. 22(3), 497-500 (1983).
[12] P. N. Robb, “Selection of optical glasses. 1: Two materials,” Appl. Opt. 24(12), 1864-1877 (1985).
[13] J. L. Rayces and M. Rosete-Aguilar, “Selection of glasses for achromatic doublets with reduced secondary spectrum. I. Tolerance conditions for secondary spectrum, spherochromatism, and fifth-order spherical aberration,” Appl. Opt. 40(31), 5663-5676 (2001).
[14] M. Rosete-Aguilar and J. L. Raycesd, “Selection of glasses for achromatic doublets with reduced secondary spectrum. II. Application of the method for selecting pairs of glasses with reduced secondary spectrum,” Appl. Opt. 40(31), 5677-5686 (2001).
[15] S. Baneerjee and L. Hazra, “Experiments with a genetic algorithm for structural design of cemented doublets with prespecified aberration targets,” Appl. Opt. 40(34), 6265-6273 (2001).
[16] R. Duplov, “Apochromatic telescope without anomalous dispersion glasses,” Appl. Opt. 45(21), 5164-5167 (2006).
[17] K. Seong and J. E. Greivernkamp, “Chromatic aberration measurement for transmission interferometric testing,” Appl. Opt. 47(35), 6508-6511 (2008).
[18] Y. Benny, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24(6), 1538-1544 (2007).
[19] S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395-2407 (2008).
[20] P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame and P. Laporta, “Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15(22), 14591-14600 (2007).
[21] W. S. Sun, C. L. Tien, C. C. Sun, and C. C. Lee, “A low-cost optimization design for minimizing chromatic aberration by doublet prisms,” J. Opt. Soc. Koera 16(4), 336-342 (2012).
[22] SCHOTT, https://www.us.schott.com/advanced_optics/english/download/ index.html?wss_setorigin=1&wss_iso=en-US
[23] SCHOTT, https://www.us.schott.com/d/advanced_optics/0387ab58-e80d-4b4d-aa02-324f4bef4c98/1.18/schott-abbe-diagram-nd-vd-jan-2018-eng_2.pdf
[24] P. Mouroulis, J. Macdonald, Geometrical Optics and Optical Design (Oxford University Press, New York, Oxford 1997)
[25] 李靜君, 稜鏡玻璃選取對色差的影響與校正, 國立中央大學光電科學研究所碩士論文中華民國九十六年
[26] W. S. Sun, “Illustrating Method of Triplet Prisms for Minimizing the Chromatic Aberration,” IODC, Jackson Hole, Wyoming, USA, JMB33 (2010).
[27] C. G. Wynne, P. M. J. H. Wormell, ” Lens design by computer,” App. Opt. 2(12), 1233-1238