| 研究生: |
林子淳 Zih-Chun Lin |
|---|---|
| 論文名稱: |
共晶化合物/鹽類其晶體固態氫鍵鍵結與其在水中溶解度之關係 Relating the Solubility in Water of Co-crystals/Salts with Their Solid-State Hydrogen Bonding Network |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 共晶化合物 、氫鍵 、鹽類 |
| 外文關鍵詞: | hydrogen bonding, salt, co-crystal |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結晶材料的物理性質主要是受到固體狀態下的分子排列所影響,更細一步說是受到分子擺放位置和彼此間的作用力所影響。而共晶和鹽類更是近年來的熱門研究議題,當中最值得深入探討的作用力即為氫鍵。
在篩選共晶/鹽類的結晶工程中,我們著重探討於產物的物理性質譬如熔化熱,溶解於水中的焓,溶解於水中的熵,和在水中的溶解度是否受到固態狀態下形成之氫鍵影響。所以說除了再重覆前人發展出一套鑒定的共晶鹽類篩選跟檢測流程,實驗室常見的分析工具,如PXRD,DSC,TGA,IR,OM,和SXD被用來了解超分子結構,並確認共晶化合物/鹽類的生成。結果共產生2:1 cytosine-fumaric acid、2:1 cytosine-acetylenedicarboxylic dihydrate的共晶化合物,和2:1cytosine-tartaric acid的鹽類化合物。在本研究中的最大特色就是提出氫鍵數的探討。
在這個實驗過程中,不同以往的是我們使用固態氫鍵數企圖解釋共晶化合物在水中的溶解度而非使用溶度積。
It is well-known that crystalline materials obtain their fundamental physical properties from the molecular arrangement within the solid, and altering the placement and/or interactions between these molecules. Most studies were interested in the formation and structure of co-crystal/salt compound, the hydrogen bonding played an important role to affect physical properties.
In crystal engineering for screening co-crystals/salts, this thesis focused on relating the physical properties such as the heat of fusion, the enthalpy of dissolution, the entropy of dissolution, and the solubility in water. Common laboratory analytical tools such as PXRD, DSC, TGA, FT-IR, OM, and SXD were used to understand the supramolecular architectures and to ensure the quality of co-crystals. 2:1 co-crystal of cytosine-fumaric acid, 2:1 co-crystal of cytosine-acetylenedicarboxylic acid, and 2:1 salt of cytosine-tartaric acid were manufactured. The significance of our research is to offer concept to study the solid state hydrogen bonding.
In the experimental process, we used hydrogen bonding number in the solid-state to attempt to explain the co-crystal solubility in the liquid state, rather than using the solubility product in the liquid state to explain the co-crystal solubility in the liquid state.
Child, S. L.; Patrick Stahly, G.; Park, A. The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. Mol. Pharmaceutics 2007, 4 (3), 323-338.
Schultheiss, N.; Newman, A. Pharmaceutical Cocrystals and Their Physicochemical Properties. Cryst. Growth Des. 2009, 9 (6), 2950-2967.
Basavoju, S.; Boström, D.; Velaga, P. Pharmaceutical Cocrystal and Salts of Norfloxacin. Cryst. Growth Des. 2006, 6 (12), 2699-2708.
Friščić, T.; Jones, W.; Cocrystal Architecture and Properties: Design and Building of Chiral and Racemic Structures by Solid-solid Reactions. Faraday Discuss. 2007, 136, 167-168.
Christine, I. S.; N. Jung.; Moritz, B.; Ute, S.; Stefan B. The Hydrogen Bond and Crystal Engineering. Chem. Soc. Rev. 1993, 22 (6), 397-407.
Lü, Jian; Han, L. W.; Lin, J. X.; Liu, T. F.; Cao, R. Rare Case of a Triple-Starnded Molecular Braid in an Organic Cocrystal. Cryst. Growth Des. 2010, 10 (10), 4217-4220.
Lehn, J. M.; Supramolecular Chemistry: from Molecular Information Towards Self-organization and Complex Matter. Rep. Prog. Phys. 2004, 67 (3), 249-265.
Almarsson, O.; Zaworotko, M. J. Crystal Engineering of the Composition of Pharmaceutical phases. Do Pharmaceutical Co-crystals represent a New Path to Improved Medicines? Chem. Commun. 2004, (17), 1889-1896.
Thomas, R.; Kulkarni, G. U. Hydrogen Bonding in Proton-Transfer Complexes of Cytosine with Trimesic and Pyromellitic Acids. J. Mol. Struct. 2008, 873(1-3), 160-167.
Lemmerer, A.; Bernstein, J.; Kahlenberg, V. Hydrogen Bonding Patterns of the Co-crystal Containing the Pharmaceutical Active Ingredient Isoniazid and Terephthalic Acid. J. Chem. Crystallor. 2011, 41 (7), 991-997.
Hickey, M. B.; Peterson, M. L.; Scoppettuolo, L. A.; Morrisette, S. L.; Vetter, A. Guzman, H.; Remenar, J. F.; Zhang, Z.; Tawa, M. D.; Haley, S.; Zaworotko, M. J.; Almarsson, Ö. Performance Comparison of a Co-crystal of Carbamazepine with Marketed Product. Eur. J. Pharm. Biopharm. 2007, 67 (1), 112–119.
Sokolov, A. N.; Friscic, T.; MacGillivray, L. R. Enforced Face-to-Face Stacking of Organic Semiconductor Building Blocks within Hydrogen-Bonded Molecular Cocrystals. J. Am. Chem. Soc. 2006, 128 (9), 2806–2807.
Koshima, H.; Miyauchi, M. Polymorphs of a Cocrystal with Achiral and Chiral Structures Prepared by Pseudoseeding: Tryptamine/ Hydrocinnamic Acid. Cryst. Growth Des., 2001, 1 (5), 355–357.
Cho, W.; Lee, H. J.; Oh, M. Growth-Controlled Formation of Porous Coordination Polymer Particles J. Am. Chem. Soc. 2008, 130 (50), 16943–16946.
Trask, A. V.; Jones, W. Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach. Top Curr. Chem. 2005, 254, 41-70.
Shu, C. C.; Lin, S. T. Prediction of Drug Solubility in Mixed Solvent Systems Using the COSMO-SAC Activity Coefficient Model. Ind. Eng. Chem. Res. 2011, 50 (1), 142-147.
Portalone, G.; Colapietro, M. Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reation. J. Chem. Crystallogr. 2009, 39 (3), 193-200.
Martins, F. T.; Doriguetto, A. C.; Ellena, J. From Rational Design of Drug Crystals to Understanding of Nucleic Acid Structures: Lamivudine Duplex. Cryst. Growth Des. 2010, 10 (2), 676-684.
Balasubramanian, T.; Muthiah, P. T.; Robinson, W. T. Cytosine-Carboxylate Interactions: Crystal Structure of Cytosinium Hydrogen Maleate. Bull. Chem. Soc. Jpn. 1996, 69 (10), 2919-2922.
Sellergren, B. Imprinted Polymers with Memory for Small Molecules, Proteins, or Crystals. Angew. Chem. Int. Ed. 2000, 39 (6), 1031-1037.
Pabo, C. O. Protein-DNA Recognition. Annu. Rev. Biochem. 1984, 53, 293-321.
Sarai, A.; Kono, H. Protein-DNA Recognition Patterns and Predictions. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 379-398.
Balzani, V.; Credi, A.; Venturi, M. Controlled Disassembling of Self-Assembling Systems: Toward Artfical Molecular-Level Devices and Machines. Proc. Natl. Acad. Sci. 2002, 99 (8), 4814-4817.
Barker, D. L.; Marsh, R. E. The Crystal Structure of Cytosine. Acta. Cryst. 1964, 17 (12), 1581-1587).
Jeffrey, G. A.; Kinoshita, Y. The Crystal Structure of Cytosine Monohydrate. Acta. Cryst. 1963, 16 (1), 20-28.
Newman, A. W.; Byrn, S. R. Solid-state analysis of the active pharmaceutical ingredient in drug products Drug Discovery Today 2003, 8 (19), 898-904.
Tiwary, A. K. Modification of Crystal Habit and Its Role in Dosage Form Performance Drug Dev. Ind. Pharm. 2001, 27 (7), 699-709.
Haines, P. J.; Wiburn, F. W. Differential Thermal Analysis and Differential Scanning Calorimetry. InThermal Methods of Analysis, 1st ed.; Blackie Academic and Professional: Scotland, 1995; pp. 69-114.
Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Infrared Spectroscopy. InIntroduction to Spectroscopy, 3rd ed.; Brooks/COLE Thomson Learning: Mississippi, 2001, pp. 13-24.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder-Handling Operation. Chapter 5 of InPowder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997; pp. 720-730.
Gotoh, K.; Masuda, H.; Higashitani, K. Fundamental Properties of Powder Beds. InPowder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997; pp. 413-423.
Gotoh, K.; Masuda, H.; Higashitani, K. Fundamental Properties of Powder Beds. InPowder Technology Handbook, 2nd ed.; Marcel Dekker: New York, 1997; pp. 659-661.
Murthy, N. S.; Reidinger, F. X-ray Analysis. InMaterials Chracterization and Chemical Analysis, 2nd ed.; Sibilia, J. P.. Ed.; Wiley-Vch: New York, 1996, pp. 143-149.
Huang, T. C. Automatic X-ray Single Crystal Structure Analysis System for Small Molecule The Rigaku J. 2004, 21 (2), 43-46.
Zhang, Y.; Grant, D. J. W. Similarity in Structures of Racemic and Enantiomeric Ibuprofen Sodium Dehydrates Acta Crystallogr. C, 2005, 61 (9), pp. m435-m438.
Hansen, L. Kr. ; Perlovich, G. L.; Baueer-Brandl, A. Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen Acta Crystallogr. E: Struct. Rep. Online 2003, 59 (9), 1357-1358.
Hansen, L. Kr.; Perlovich, G. L.; Bauer-Brandl, A. Redetermination and H-atom Refinement of (S)-(+)-Ibuprofen. corrigendum Acta Crystallogr. E 2006, 62 (7), e17-e18.
Ciacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Ferraris, G.; Gilli, G.; Zanotti, G.; Catti, M. Experimental Method in X-ray Andneutron Crystallography. InFundamentals of Crystallography, 2nd ed.; Oxford University Press: New York, 2002; p. 336.
Glusker, J. P.; Trueblood, K. N. Experimental Measurement. InCrystal Structure Analysis A Primer, 2nd ed.; Oxford University Press: New York, 1985; pp. 42-47.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Components of Optical Instrument. InPrinciples of Instrumental Analysis, 5th ed.; Thomson Learning: Mississippi, 2001; pp. 182-183.
Bauer-Brandl, A. Polymorphic Transitions of Cimetidine During Manufacture of Solid Dosage Forms Int. J. Pharm. 1996, 140 (2), 195-206.
Brittain, H. G.; Elder, B. J.; Isbeter, P. K.; Salemo, A. H. Solid-State Fluorescence Studies of Some Polymorphs of Diflunisal Pharm. Res. 2005, 22 (6), 999-1006.
http://biosurface.memphis.edu/images/ConfigCoordDiag2.png, “Luminescence.”
Hilfiker, R.; Berghausen, J.; Blatter, F.; Burkhard, A.; Paul, S. M. D.; Freiermuth, B.; Geoffory, A.; Hofmeier, U.; Marcolli, C.; Siebenhaar, B.; Szelagiewicz, M.; Vit, A.; Raumer, M. V. Polymorphism-Integrated Approach from High-throughput Screening to Crystallization Optimization. J. Therm. Anal. Calorim. 2003, 73 (2), 429-440.
Giron, D. Thermal Analysis, and Calorimetric Methods in the Characterisation of Polymorphs and Solvates. Thermochim. Acta 1995, 245 (2), 1-59.
Clas, S. D.; Dalton, C. R.; Hancock, B. C. Differential Scanning Calorimetry: Applications in Drug Development. Pharm. Sci. Technol. Today 1999, 2 (8), 311-320.
Lu, E.; Rodríguez-Hornedo, N.; Suryanarayanan R. A Rapid Thermal Method for Cocrystal Screening. CrystEngComm 2008, 10 (6), 665 – 668.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Thermal Methods. InPrinciples of Instrumental Analysis, 5th ed.; Thomson Learning: Mississippi, 2001; pp. 798-801.
Kriss, T. C.; Kriss, V. M.; Vensa, M. History of the Operating Microscope: From Magnifying Glass to Microneurosurgery. Neurosurgery 1998, 42 (4), 899-907.
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology.”
Pan, A.; Lin, X.; Liu, R.; Li, C.; He, X.; Gao, H.; Zou, B. Surface Crystallization Effects on The Optical and Electric Properties of CdS Nanorods. Nanotechnology 2005, 16 (10), 2402-2406.
Akpalu, Y.; Kielhorn, L.; Hsiao, B. S.; Stein, R. S.; Russell, T. P.; Egmond, J. V.; Muthukumar, M. Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements. Macromol. 1999, 32 (3), 765-770.
Li, C.; Kirkwood, K. L.; Brayer, G. D. The Biological Crystallization Resource: Facilitaing Knowledge-Based Protein Crystallization. Cryst. Growth Des. 2007, 7 (11), 2147-2152.
Wright, A. J.; McGauley, S. E.; Narine, S. S.; Willis, W. M.; Lencki, R. W. Marangoni, A. G. Solvent Effects on the Crystallization Behavior of Milk Fat Fractions. J. Agric. Food Chem. 2000, 48 (4), 1003-1040.
Ahari, H.; Bedard, R. L.; Bowes, C. L.; Coombs, N.; Dag, O. M.; Jiang, T.; Ozin, G. A.; Petroy, S.; Sokolov, I.; Verma, A.; Vovk, G.; Young, D. Effect of Microgravity on The Crystallization of a Self-assembling Layered Material. Nature 1997, 388 (6645), 857-860.
Morissette, S. L.; Almarsson, O.; Peterson, M. L.; Remenar, J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.; Gardner, C. R. High-Throughput Crystallization: Polymorphs, Salts Co-crystals and Solvates of Pharmaceutical Solids. Adv. Drug Del. Rev. 2004, 56 (3), 275-300 (2004).
Basavoju, S.; Bostrom, D.; Velaga, S. P.; Pharmaceutical Cocrystal and Salts of Norfloxacin. Cryst. Growth Des. 2006, 6 (12), 2699-2708.
Braga, D.; Grepioni, F.; Making Crystals from Crystals: A Green Route to Crystal Engineering and Polymorphism. Chem. Commun. 2005, 7 (29), 3635-3645.
Hilfiker, R.; Berghausen, J.; Blatter, F.; Burkhard, A.; Paul, S. M. D.; Freiermuth, B.; Geoffroy, A.; Hofmeier, U.; Marcolli, C.; Siebenhaar, B.; Szeiagiewicz, M.; Vit, A.; Raumer, M. V. Polymorphism-Integrated Approach, from High-Throughput Screening to Crystallization Optimization. J. Therm. Anal. Calorim. 2003, 73 (2), 429-440.
Grant, D. J. W.; Theory and Origin of Polymorphism. In Polymorphism in Pharmaceutical Solids; Marcel Dekker: New York, 1999, pp 1-21.
Yurteri, C. U.; Mazumder, M. K.; Grable, N.; Ahuja, G.; Trigwell, S.; Biris, A. S.; Sharma, R.; Sims, R. A. Electrostatic Effects on Dispersion, Transport, and Deposition of Fine Pharmaceutical Powders: Development of an Experiment Method for Quantitative Analysis. Pharticulate Sci. Tech. 2002, 20 (1), 59-79.
York, P. Solid-State Properties of Powders in the Formulation and Processing of Solid Dosage Forms. Int. J. Pharm. 1983, 14 (1), 1-28.
Portalone, G.; Colapietro, M. Solid-Phase Molecular Recognition of Cytosine Based on Proton-Transfer Reaction. J. Chem. Crystallogr. 2009, 39 (3), 193-200.
Balasubramanian, T.; Muthiah, P. T.; Robinson, W. T. Cytosine-Carboxylate Interactions: Crystal Structure of Cytosineium Hydrogen Maleate. Bull. Chem. Soc. Jpn. 1996, 69 (10), 2919-2922.
Perumalla, S. R.; Suresh, E.; Pedireddi, V. R.; Nucleobases in Molecular Recognition: Molecular Adducts of adenine and Cytosine with COOH Functional Groups. Angew. Chem. Int. Ed. 2005, 44 (47), 7752-7757.
Yu, Z.; Li, W.; Hagen, J. A.; Zhou, Y.; Klotzkin, D.; Grote, J. G.; Steckl, A. J. Photoluminescence and Lasing Form Deoxyribonucleic Acid (DNA) Thin Doped with Sulforhodamine. Applied Optics 2007, 46 (9), 1507-1513.
Hagen, J. A.; Li, W.; Steckl, A. J.; Enhanced Emission Efficiency in Organic Light-Emitting Diodes Using Deoxyribonucleic Acid Complex As an Electron Blocking Layer. Appl. Phys. Lett. 2006, 88 (17), 1-3.
Brittain, H. G.; Grant, D. J. W.; Effect of Polymorphism and Solid-State Solvation on Solubility and Dissolution Rate. InPolymorphism in Pharmaceutical Solids; Marcel Dekker: New York, 1999; pp 279-330.
Bhattachar, S. N.; Deschenesa, L. A.; Wesleya, J. A. Solubility: It Is Not Just for Physical Chemists. Drug Discov. Today 2006, 11 (21-22), 1012-1018.
Price, C. J. Take Some Solid Steps to Improve Crystallization. Chem. Eng. Prog. 1997, 93 (9), 34-43.
Winn, D.; Doherty, M. F.; A New Technique for Predicting the Shape of Solution-Grown Organic Crystals. AlChE J. 1998, 44 (11), 2501-2514.
Mullin, J. W. Crystal Habit Modification. In Crystallization, 3rd ed.; Butterworth-Heinemann: London, 1997; pp 248-250.
Tiwary, A. K. Modification of Crystal habit and Its Role in Dosage from Performance. Drug Dev. Ind. Pharm. 2001, 27 (7), 699-709.
Rasenack, N.; Müller, B. W. Crystal Habit and Tabletting Behavior. Int. J. Pharm. 2002, 244 (1-2), 45-47.
Lahav, M.; Leiserowitz, L. The Effect of Solvent on Crystal Growth and Crystal Habit. Chem. Eng. Sci. 2001, 56 (7), 2245-2253.
Bernstein, J.; Davey, R. J.; Henck, J. Concomitant Polymorphs. Angew. Chem. Int. Ed. 1999, 38 (23), 3440-3461.
Cardew, P. T.; Davey, R. J.; The Kinetics of Solvent-Mediated Phase Transformation. Math. Phys. Sci. 1985, 398 (1815), 415-428.
Pack, K; Evans, J. M. B.; Myerson, A. S.; Determination of Solubility of Polymorphs Using Differential Scanning Calorimetry. Cryst. Growth. Des. 2003, 3 (6), 991-995.
Threfall, T.; Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent. Org. Process Res. Dev. 2000, 4 (5), 384-390.
Yu, L. X.; Furness, M. S.; Raw, A.; Woodland Outlaw, K. P.; Nashed, N. E.; Ramos, E.; Miller, S. P. F.; Adams, R. C.; Fang, F.; Patel, R. M.; Holcombe Jr., F. O.; Chiu, Y.; Hussain, A. S. Scientific Considerations of Pharmaceutical Solid Polymorphism in Abbreviated New Drug Applications. Pharm. Res. 2004, 20 (4), 531-536.
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Scrrening. Pharm. Tech. 2006, 30 (10), 72-92.
Gao, D.; Raytting, J. H. Use of Solution Calorimetry to Determine the Extent of Crystallization of Drugs and Excipients. Int. J. Pharm. 1997, 151 (2), 183-192.
Schiedt, J.; Weinkauf, R.; Neumark, D. M.; Schlag, E. W. Anion Spectroscopy of Uracil, Thymine and the Amino-Oxo and Amino-Hydroxy Tautomers of Cytosine and Their Water Clusters. Chem. Phys. 1998, 239 (1-3), 511-514.
Barker, D. L.; Marsh, R. E. The Crystal Structure of Cytosine. Acta. Crytst. 1964, 17 (12), 1581-1587.
Jeffrey, G. A.; Kinoshita, Y. The Crystal Structure of Cytosine Monohydrate. Acta. Cryst. 1963, 16 (1), 20-28.
Ibahim, H. G.; Pisano, F.; Bruno, A. Polymorphism of Phenylbutazone: Properties and Compressional Behavior of Crystals. J. Pharm. Sci. 1977, 66 (5), 669-673.
Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Major Spectra-Structure Correlations by Spectral Regions. InIntroduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press Inc: New York, 1991; 394.
Cheney, M. L.; Weyna, D. R.; Shan, N.; Hanna, M.; Wojtas, L.; Zaworotko, M. J. Supramolecular Architectures of Meloxicam Carboxylic Acid Cocrystals, a Crystal Engineering Case Study. Cryst. Growth Des. 2010, 10 (10), 4401-4413.
Lee, T.; Wang, P. Y. Screening, Manufacturing, Photoluminescence, and Molecular Recognition of Co-crystals: Cytosine with Dicarboxylic Acids. Cryts. Growth Des. 2010, 10 (3), 1419-1434.
Shan, N.; Zaworotko, M. J. The Role of Cocrystals in Pharmaceutical Science. Drug Discovery Today 2008, 13 (9-10), 440–446.
Callear, S. K.; Hursthouse, M. B.; Threlfall, T. L. Co-crystallisation of organic α,ω-dicarboxylic acids with the cyclic amides 2-pyrrolidinone and 2-imidazolidinone. CrystEngComm 2009, 11 (8), 1609-1614.
Kastelic, J.; Hodnik, Ž.; Šket, P.; Plavec, J.; Lah, N.; Leban, I.; Pajk, M.; Planinšek, O.; Kikelj, D. Fluconazole Cocrystals with Dicarboxylic Acids. Cryst. Growth Des. 2010, 10 (11), 4943-4953.
Braga, D.; Grepioni, F.; Lampronti, G. I. Supramolecular Metathesis: co-former exchange in co-crystals of pyrazine with (R,R)-, (S,S)-, (R,S)- and (S,S/R,R)-tartaric acid. CrystEngComm 2011, 13 (9), 3122-3124.
Steiner, T. The Whole Palette of Hydrogen Bonds: The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed. 2002, 41 (1), 48-76.
Fayasankar, A.; Somwangthanaroj, A.; Shao, Z. J.; Rodríguez-Hornedo, N. Cocrystal Formation during Cogrinding and Storage is Mediated by Amorphous Phase. Pharm. Res.2006, 23(10), 2381-2392.
Olenik, B.; Smolka T.; Boese, R.; Sustmann, R. Supramolecular Synthesis by Cocrystallization of Oxalic and Fumaric Acid with Diazanaphthalenes. Cryst. Growth Des. 2003, 3 (2), 183-188.
Taylor, R.; Kennard, O. Crystallographic Evidence for the Existence of CH.cntdot.. cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.CL hydrogen bonds. J. Am. Chem. Soc. 1982, 104 (19), 5063-5070.
Basavoju, S.; Bostrom, D.; Velaga, S. P. Indomethacin-Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization. Pharm. Res. 2008, 25(3), 530-541.
McNamara, D. P.; Childs, S. L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M. S.; Mannion, R.; O’Donnell, E.; Park, A. Use of A Glutaric Acid Cocrystal to Improve Oral Bioavailability of A Low Solubility API. Pharm. Res. 2006, 23 (8), 1888-1897.
Ter Horst, J. H.; Deij, M. A. Cains, P. W. Discovering New Co-Crystals. Cryst. Growth Des. 2009, 9 (3), 1531–1537.
Zhang, G. G. Z.; Henry, R. F.; Borchardt, T. B.; Lou, X. Efficient Co-crystal Screening Using Solution-Mediated Phase Transformation. J. Pharm. Sci. 2007, 96 (5), 990–995.
Trask, A. V.; Samuel Motherwell, W. D.; Jones, W. Solvent-Drop Grinding: Green Polymorph Control of Co-crystallization. Chem. Commun. 2004, (7), 890–891.
Weyna, D. R.; Shattock, T.; Vishweshwar, P.; Zaworotko, M. J. Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs. Slow Evaporation. Crys. Growth Des. 2009, 9 (2), 1106–1123.
Gagniere, E.; Mangin, D.; Puel, F.; Bebon, C.; Klein, J. P.; Monnier, O.; Garcia, E. Cocrystal Formation in Solution: In Situ Solute Concentration Monitoring of the Two Components and Kinetic Pathways. Cryst. Growth Des. 2009, 9 (8), 3376–3383.
Fris ̌c ̌ic ́, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W. The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallization Outcome. CrystEngComm 2009, 11 (3), 418–426.
Lu, E.; Rodríguez-Hornedo, N.; Suryanarayanan, R. A Rapid Thermal Method for Cocrystal Screening. CrystEngComm 2008, 10 (6), 665–668.
Ling, A. R.; Baker, J. L. Halogen derivatives of quinine. Part III. Derivatives of quinhydrone. J. Chem. Soc. 1893, 63, 1314-1327.
Trask, A. V.; Shan, N.; Motherwell, W. D. S.; Jones, W.; Feng, S.; Tan, R. B. H.; Carpenter, K. J. Selective Polymorph Transformation via Solvent-drop Grinding. Chem. Commun. 2005, (7), 880-882.
Trask, A. V.; Van de Streek, J.; Samuel Motherwell, W. D.; Jones, W. Achieving Polymorphic and Stoichiometric Diversity in Co-crystal Formation: Importance of Solid-State Grinding, Powder X-ray Structure Determination, and Seeding. Crys. Growth Des. 2005, 5(6), 2233-2241.
Blagden, N.; Berry, D. J.; Parkin, A.; Javed, H.; Ibrahim, A.; Gavan, P. T.; De Matos, L. L.; Seaton, C. C. Current Directions in Co-crystal Growth. New J. Chem. 2008, 32 (10), 1659-1672.
Shan, N.; Toda, F.; Jones, W. Mechanochemistry and Co-crystal Formation: Effect of Solvents on Reaction Kinetics. Chem. Commun. 2002, (20), 2372-2373.
Fris ̌c ̌ic ́, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Crys. Growth Des. 2009, 9 (3), 1621-1637.
Trask, A. V.; Samuel Motherwell, W. D.; Jones, W. Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration. Crys. Growth Des. 2005, 5(3), 1013-1021.
Trask, A. V.; Jones, W. Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach. Top Curr. Chem. 2005, 254, 41-70.
Perakyla, M. A Model Study of the Enzyme-Catalyzed Cytosine Methylation Using ab Initio Quantum Mechanical and Density Functional Theory Calculations: pKa of the Cytosine N3 in the Intermediates and Transition States of the Reaction. J. Am. Chem. Soc. 1998, 120 (49), 12895-12902.
Cheney, M. L.; Weyna, D. R.; Shan, N.; Hanna, M.; Wojtas, L.; Zaworotko, J. Supramolecular Architectures of Meloxicam Carboxylic Acid Cocrystals, a Crystal Engineering Case Study. Cryst. Growth Des. 2010, 10 (10), 4401-4413.
Strathmann, T. J.; Mayneni, S. C. B. Speciation of Aqueous Ni(II)-Carboxylate and Ni(II)-Fulvic Acid Solutions: Combined ATR-FTIR and XAFS analysis. Geochim. Cosmochim. Acta 2004, 68 (17), 3441-3458.
Wu, D. H.; Ge, J. Z.; Cai, H. L.; Zhang, W.; Xiong, R. G. Organic Salt of Hydrogen L-tartaric Acis: A Novel Wide-temperature-range Ferroelectrics with a Reversible Phase Transition. 2011, 13 (1), 319-324.
Child, S. L.; Patrick Stahly, G.; Park, A. The Salt-Cocrystal Continuum: The Influence of Crystal Structure on Ionization State. Mol. Pharmaceutics 2007, 4 (3), 323-338.
Johnson, S. L.; Rumon, K. A. Infrared Spectra of Solid 1:1 Pyridine-Benzoic Acid Complexes; the Nature of the Hydrogen Bond as a Function of the Acid-Base Levels in the Complex. J. Phys. Chem. 1965, 69 (1), 74-86.
Aakeroy, C. B.; Desper, J.; Fasulo, M. E. Improving Success Rate of Hydrogen-Bond Driven Synthesis of Co-crystals. CystEngComm 2006, 8 (8), 586-588.
Colthup, N. B.; Daly, L. H.; Wiberley, S. E.; Carbonyl Compounds In Introduction to infrared and Raman spectroscopy; Axademic Press Inc.: New York, USA, 1990, pp. 315,318.
Colthup, N. B.; Daly, L. H.; Wiberley, S. E.; Amines, C=N, and N=O Compounds In Introduction to Infrared and Raman Spectroscopy; Axademic Press Inc.: New York, USA, 1990, pp, 340,388.
Ataka, K.; Osawa, M. In Situ Infrared Study of Cytosine Adsorption on Gold Electrodes J. Electroanal. Chem. 1999, 460 (1), 188-196.
Smith, G.; Lynch, D. E.; Byriel, K. A.; Kennard, C. H. L. The Utility of 4-Aminobenzoic Acid in Promotion of Hydrogen Bonding in Crystallization Process: the Structures of the Cocrystals with Halo and Nitro Substituted Aromatic Compounds, and the Crystal Structures of the Adducts with 4-Nitroniline (1:1), 4-(4-Nitrobenzyl)pyridine (1:2), and (4-Nitrophenyl)acetic acid (1:1). J. Chem. Crystallogr. 1997, 27 (5), 307-317.
Florian, J.; Baumruk, V.; Leszczynski, J. IR and Raman Spectra, Tautomeric Stabilities, and Scaled Quantum Mechanical Force Fields of Protonated Cytosine. J. Phys. Chem. 1996, 100 (13), 5578-5589.
Saenger, W. Forces Stabilizing Associations Between Bases: Hydrogen Bonding and Base Stacking InPrinciples of Nucleic Acid Structure; Springer-Verlag: New York, USA, 1984, pp. 118-124.
Good, D. J.; Rodríguez-Hornedo, N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9 (5), 2252-2264.
Alhalaweh, A.; George, S.; Bostr m , D.; Velaga, S. P. 1:1 and 2:1 Urea−Succinic Acid Cocrystals: Structural Diversity, Solution Chemistry, and Thermodynamic Stability. Cryst. Growth Des. 2010, 10 (11), 4847-4855.
Jayasankar, A.; Sreenivas Reddy, L.; Bethune, S. J.; Rodríguez-Hornedo, N. Role of Cocrystal and Solution Chemistry on the Formation and Stability of Cocrystals with Different Stoichiometry. Cryst. Growth Des. 2009, 9 (2), 889-897.
Nehm, S. J.; Rodríguez-Spong, B.; Rodríguez-Hornedo, N. Phase Solubility Diagrams of Cocrystals Are Explained by Solubility Product and Solution Complexation. Cryst. Growth Des. 2006, 6 (2), 592-600.